Abnormal mTOR Signaling Pathway Activity in Autism Spectrum Disorders: Prospects of Mechanism-Based Therapy

Yoo H. 2015. Genetics of autism spectrum disorder: current status and possible clinical applications. Exp. Neurobiol. 24, 257–272. https://doi.org/10.5607/en.2015.24.4.257

Article  PubMed  PubMed Central  Google Scholar 

Winden K.D., Ebrahimi-Fakhari D., Sahin M. 2018. Abnormal mTOR activation in autism. Annu. Rev. Neurosci. 41, 1–23. https://doi.org/10.1146/annurev-neuro-080317-061747

Article  CAS  PubMed  Google Scholar 

Bockaert J., Marin P. 2015. mTOR in brain physiology and pathologies. Physiol. Rev. 95, 1157–1187. https://doi.org/10.1152/physrev.00038.2014

Article  CAS  PubMed  Google Scholar 

Trifonova E.A, Klimenko A.I., Mustafin Z.S., Lashin S.A., Kochetov A.V. 2019. The mTOR signaling pathway activity and vitamin D availability control the expression of most autism predisposition genes. Int. J. Mol. Sci. 20, E6332. https://doi.org/10.3390/ijms20246332

Article  CAS  Google Scholar 

Zoghbi H.Y., Bear M.F. 2012. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4, a009886. https://doi.org/10.1101/cshperspect.a009886

Article  CAS  PubMed  PubMed Central  Google Scholar 

Onore C., Yang H., Van de Water J., Ashwood P. 2017. Dynamic Akt/mTOR signaling in children with autism spectrum disorder. Front. Pediatr. 5, 43. https://doi.org/10.3389/fped.2017.00043

Article  PubMed  PubMed Central  Google Scholar 

Tylee D.S., Hess J.L., Quinn T.P., Barve R., Huang H., Zhang-James Y., Chang J., Stamova B.S., Sharp F.R., Hertz-Picciotto I., Faraone S.V., Kong S.W., Glatt S.J. 2017. Blood transcriptomic comparison of individuals with and without autism spectrum disorder: a combined-samples mega-analysis. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 174, 181–201. https://doi.org/10.1002/ajmg.b.32511

Article  CAS  PubMed  Google Scholar 

Jiang H.-Y., Xu L.-L., Shao L., Xia R.M., Yu Z.H., Ling Z.X., Yang F., Deng M., Ruan B. 2016. Maternal infection during pregnancy and risk of autism spectrum disorders: a systematic review and meta-analysis. Brain Behav. Immun. 58, 165–172. https://doi.org/10.1016/j.bbi.2016.06.005

Article  PubMed  Google Scholar 

Lee B.K., Magnusson C., Gardner R.M., Blomström Å., Newschaffer C.J., Burstyn I., Karlsson H., Dalman C. 2015. Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders. Brain Behav. Immun. 44, 100–105. https://doi.org/10.1016/j.bbi.2014.09.001

Article  PubMed  Google Scholar 

Lombardo M.V., Moon H.M., Su J., Palmer T.D., Courchesne E., Pramparo T. 2018. Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder. Mol. Psychiatry. 23, 1001–1013. https://doi.org/10.1038/mp.2017.15

Article  CAS  PubMed  Google Scholar 

Ehninger D., Sano Y., de Vries P.J., Dies K., Franz D., Geschwind D.H., Kaur M., Lee Y.S., Li W., Lowe J.K., Nakagawa J.A., Sahin M., Smith K., Whittemore V., Silva A.J. 2012. Gestational immune activation and Tsc2 haploinsufficiency cooperate to disrupt fetal survival and may perturb social behavior in adult mice. Mol. Psychiatry. 17, 62–70. https://doi.org/10.1038/mp.2010.115

Article  CAS  PubMed  Google Scholar 

Ramirez-Celis A., Becker M., Nuño M., Schauer J., Aghaeepour N., Van de Water J. 2021. Risk assessment analysis for maternal autoantibody-related autism (MAR-ASD): a subtype of autism. Mol. Psychiatry. 26, 1551–1560. https://doi.org/10.1038/s41380-020-00998-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trifonova E.A., Mustafin Z.S., Lashin S.A., Kochetov A.V. 2022. Abnormal mTOR activity in pediatric autoimmune neuropsychiatric and MIA-associated autism spectrum disorders. Int. J. Mol. Sci. 23, 967. https://doi.org/10.3390/ijms23020967

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meltzer A., Van de Water J. 2017. The role of the immune system in autism spectrum disorder. Neuropsychopharmacology. 42, 284–298. https://doi.org/10.1038/npp.2016.158

Article  CAS  PubMed  Google Scholar 

Williams K.A., Swedo S.E. 2015. Post-infectious autoimmune disorders: Sydenham’s chorea, PANDAS and beyond. Brain Res. 1617, 144–154. https://doi.org/10.1016/j.brainres.2014.09.071

Article  CAS  PubMed  Google Scholar 

True G. 2019. November Clinical Conversation: understanding PANS and PANDAS. In Aspire. https:// a-spire.care/news/november-clinical-conversation-understanding-pans-and-pandas/.

Swedo S.E., Leonard H.L., Mittleman B.B., Allen A.J., Rapoport J.L., Dow S.P., Kanter M.E., Chapman F., Zabriskie J. 1997. Identification of children with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections by a marker associated with rheumatic fever. Am. J. Psychiatry. 154, 110–112. https://doi.org/10.1176/ajp.154.1.110

Article  CAS  PubMed  Google Scholar 

Shimasaki C., Frye R.E., Trifiletti R., Cooperstock M., Kaplan G., Melamed I., Greenberg R., Katz A., Fier E., Kem D., Traver D., Dempsey T., Latimer M.E., Cross A., Dunn J.P., Bentley R., Alvarez K., Reim S., Appleman J. 2020. Evaluation of the Cunningham PanelTM in pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS): changes in antineuronal antibody titers parallel changes in patient symptoms. J. Neuroimmunol. 339, 577138. https://doi.org/10.1016/j.jneuroim.2019.577138

Article  CAS  PubMed  Google Scholar 

Cunningham M.W. 2012. Streptococcus and rheumatic fever. Curr. Opin. Rheumatol. 24, 408–416. https://doi.org/10.1097/BOR.0b013e32835461d3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cunningham M.W. 2014. Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal connection. Int. Rev. Immunol. 33, 314–329. https://doi.org/10.3109/08830185.2014.917411

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gulati P., Gaspers L.D., Dann S.G., Joaquin M., Nobukuni T., Natt F., Kozma S.C., Thomas A.P., Thomas G. 2008. Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab. 7, 456–465. https://doi.org/10.1016/j.cmet.2008.03.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jing Z., Sui X., Yao J., Xie J., Jiang L., Zhou Y., Pan H., Han W. 2016. SKF-96365 activates cytoprotective autophagy to delay apoptosis in colorectal cancer cells through inhibition of the calcium/CaMKIIγ/AKT-mediated pathway. Cancer Lett. 372, 226–238. https://doi.org/10.1016/j.canlet.2016.01.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan X., Zhou J., Yan X., Bi X., Liang J., Lu S., Luo L., Zhou D., Yin Z. 2021. Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway. Life Sci. 275, 119355. https://doi.org/10.1016/j.lfs.2021.119355

Article  CAS  PubMed  Google Scholar 

Cheng Y.-L., Kuo C.-F., Lu S.-L., Omori H., Wu Y.N., Hsieh C.L., Noda T., Wu S.R., Anderson R., Lin C.F., Chen C.L., Wu J.J., Lin Y.S. 2019. Group A Streptococcus induces LAPosomes via SLO/β1 integrin/NOX2/ROS pathway in endothelial cells that are ineffective in bacterial killing and suppress xenophagy. mBio. 10, e02148-19. https://doi.org/10.1128/mBio.02148-19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J., Meng M., Li M., Guan X., Liu J., Gao X., Sun Q., Li J., Ma C., Wei L. 2020. Integrin α5β1, as a receptor of fibronectin, binds the FbaA protein of group A Streptococcus to initiate autophagy during infection. mBio. 11, e00771-20. https://doi.org/10.1128/mBio.00771-20

Article  PubMed  PubMed Central  Google Scholar 

Toh H., Nozawa T., Minowa-Nozawa A., Hikichi M., Nakajima S., Aikawa C., Nakagawa I. 2020. Group A Streptococcus modulates RAB1- and PIK3C3 complex-dependent autophagy. Autophagy. 16, 334–346. https://doi.org/10.1080/15548627.2019.1628539

Article  CAS  PubMed  Google Scholar 

Shuid A.N., Jayusman P.A., Shuid N., Ismail J., Nor N.K., Mohamed I.N. 2020. Update on atypicalities of central nervous system in autism spectrum disorder. Brain Sci. 10, E309. https://doi.org/10.3390/brainsci10050309

Article  CAS  Google Scholar 

Salter M.W., Stevens B. 2017. Microglia emerge as central players in brain disease. Nat. Med. 23, 1018–1027. https://doi.org/10.1038/nm.4397

Article  CAS  PubMed  Google Scholar 

Colonna M., Butovsky O. 2017. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441–468. https://doi.org/10.1146/annurev-immunol-051116-052358

Article  CAS  PubMed  PubMed Central  Google Scholar 

Block M.L., Zecca L., Hong J.-S. 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69. https://doi.org/10.1038/nrn2038

Article  CAS  PubMed  Google Scholar 

Dong H., Zhang X., Qian Y. 2014. Mast cells and neuroinflammation. Med. Sci. Monit. Basic Res. 20, 200–206. https://doi.org/10.12659/MSMBR.893093

Article  PubMed  PubMed Central  Google Scholar 

Pardo C.A., Vargas D.L., Zimmerman A.W. 2005. Immunity, neuroglia and neuroinflammation in autism. Int. Rev. Psychiatry. 17, 485–495. https://doi.org/10.1080/02646830500381930

Article  PubMed  Google Scholar 

Zhmurov V.A., Kruchinin E.V., Zhmurov D.V., Lebedev I.A., Pyshnov A.S., Akhmet’yanov M.A., Kuznetsov V.V., Kozlov M.V., Mokin E.A., Alekberov R.I., Tyapkin A.V., Smetanin E.I., Seipilov A.A., Tarasov M.Yu. 2020. Molecular mechanisms of development of synaptic pruning. Ural. Med. Zh. 1 (184), 58‒63. https://doi.org/10.25694/URMJ.2020.01.11

Article  Google Scholar 

留言 (0)

沒有登入
gif