Comparative Analysis of Family A DNA-Polymerases as a Searching Tool for Enzymes with New Properties

Nikoomanzar A., Chim N., Yik E.J., Chaput J.C. 2020. Engineering polymerases for applications in synthetic biology. Q. Rev. Biophys. 53, 1–31.

Article  Google Scholar 

Wu D.A.N.Y., Ugozzoli L., Pal B.K., Qian J.I.N., Wallace R.B. 1991. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol. 10, 233–238.

Article  CAS  PubMed  Google Scholar 

Owczarzy R., Moreira B.G., You Y., Behlke M.A., Walder J.A. 2008. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemistry. 47, 5336–5353.

Article  CAS  PubMed  Google Scholar 

Garcia-Diaz M., Bebenek K. 2007. Multiple functions of DNA polymerases. CRC. Crit. Rev. Plant Sci. 26, 105–122.

Article  CAS  PubMed  Google Scholar 

Alba M.M. 2001. Replicative DNA polymerases. Genome Biol. 2, 1–7.

Article  Google Scholar 

Rothwell P.J., Waksman G. 2005. Structure and mechanism of DNA polymerases. Adv. Protein Chem. 71, 401–440.

Article  CAS  PubMed  Google Scholar 

Chien A., Edgar D.B., Trela J.M. 1976. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J. Bacteriol. 127, 1550–1557.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi J.J., Jung S.E., Kim H.K., Kwon S.T. 1999. Purification and properties of Thermus filiformis DNA polymerase expressed in Escherichia coli. Biotechnol. Appl. Biochem. 30, 19–25.

CAS  PubMed  Google Scholar 

Lawyer F.C., Stoffel S., Saiki R.K., Chang S.Y., Landre P.A., Abramson R.D., Gelfand D.H. 1993. High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. Genome Res. 2, 275–287.

Article  CAS  Google Scholar 

Park J.H., Kim J.S., Kwon S.-T., Lee D.-S. 1993. Purification and characterization of Thermus caldophilus GK24 DNA polymerase. Eur. J. Biochem. 214, 135–140.

Article  CAS  PubMed  Google Scholar 

Kaledin A.S., Sliusarenko A.G., Gorodetskiĭ S.I. 1980. Isolation and properties of DNA polymerase from extreme thermophylic bacteria Thermus aquaticus YT-1. Biokhimiia. 45, 644–651.

CAS  PubMed  Google Scholar 

Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 239, 487–491.

Article  CAS  PubMed  Google Scholar 

Arezi B., Xing W., Sorge J.A., Hogrefe H.H. 2003. Amplification efficiency of thermostable DNA polymerases. Anal. Biochem. 321, 226–235.

Article  CAS  PubMed  Google Scholar 

Al-Soud W.A., Rådström P. 2001. Purification and characterization of PCR-inhibitory components in blood cells. J. Clin. Microbiol. 39, 485–493.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flaman J.-M., Frebourg T., Moreau V., Charbonnier F., Martin C., Ishioka C., Friend S.H., Iggo R. 1994. A rapid PCR fidelity assay. Nucleic Acids Res. 22, 3259–3260.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ling L.L., Keohavong P., Dias C., Thilly W.G. 1991. Optimization of the polymerase chain reaction with regard to fidelity: modified T7, Taq, and Vent DNA polymerases. Genome Res. 1, 63–69.

Article  CAS  Google Scholar 

Lee J.I., Kim Y.J., Bae H., Cho S.S., Lee J.-H., Kwon S.-T. 2010. Biochemical properties and PCR performance of a family B DNA polymerase from hyperthermophilic euryarchaeon Thermococcus peptonophilus. Appl. Biochem. Biotechnol. 160, 1585–1599.

Article  CAS  PubMed  Google Scholar 

Harrell R.A., Hart R.P. 1994. Rapid preparation of Thermus flavus DNA polymerase. Genome Res. 3, 372–375.

Article  CAS  Google Scholar 

Carballeira N., Nazabal M., Brito J., Garcia O. 1990. Purification of a thermostable DNA polymerase from Thermus thermophilus HB8, useful in the polymerase chain reaction. Biotechniques. 9, 276–281.

CAS  PubMed  Google Scholar 

Yang S.-W., Astatke M., Potter J., Chatterjee D.K. 2002. Mutant Thermotoga neapolitana DNA polymerase I: altered catalytic properties for non-templated nucleotide addition and incorporation of correct nucleotides. Nucleic Acids Res. 30, 4314–4320.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steitz T.A. 1993. DNA- and RNA-dependent DNA polymerases. Curr. Opin. Struct. Biol. 3, 31–38.

Article  CAS  Google Scholar 

Steitz T.A. 1998. A mechanism for all polymerases. Nature. 391, 231–2323.

Article  CAS  PubMed  Google Scholar 

Steitz T.A. 1999. DNA polymerases: structural diversity and common mechanisms. J. Biol. Chem. 274, 17395–17398.

Article  CAS  PubMed  Google Scholar 

Joyce C.M. 2013. DNA polymerase I, Bacterial. In Encyclopedia of Biological Chemistry, 2nd ed. Elsevier, pp. 87–90.

Google Scholar 

Betz K., Malyshev D.A., Lavergne T., Welte W., Diederichs K., Dwyer T.J., Ordoukhanian P., Romesberg F.E., Marx A. 2012. KlenTaq polymerase replicates unnatural base pairs by inducing a Watson–Crick geometry. Nat. Chem. Biol. 8, 612–614.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raper A.T., Reed A.J., Suo Z. 2018. Kinetic mechanism of DNA polymerases: contributions of conformational dynamics and a third divalent metal ion. Chem. Rev. 118, 6000–6025.

Article  CAS  PubMed  Google Scholar 

Berdis A.J. 2009. Mechanisms of DNA polymerases. Chem. Rev. 109, 2862–2879.

Article  CAS  PubMed  Google Scholar 

Brautigam C.A., Steitz T.A. 1998. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr. Biol. 8, 54–63.

CAS  Google Scholar 

Ignatov K.B., Bashirova A.A., Miroshnikov A.I., Kramarov V.M. 1999. Mutation S543N in the thumb subdomain of the Taq DNA polymerase large fragment suppresses pausing associated with the template structure. FEBS Lett. 448, 145–148.

Article  CAS  PubMed  Google Scholar 

Drum M., Kranaster R., Ewald C., Blasczyk R., Marx A. 2014. Variants of a Thermus aquaticus DNA polymerase with increased selectivity for applications in allele- and methylation-specific amplification. PLoS One. 9, e96640.

Article  PubMed  PubMed Central  Google Scholar 

Raghunathan G., Marx A. 2019. Identification of Thermus aquaticus DNA polymerase variants with increased mismatch discrimination and reverse transcriptase activity from a smart enzyme mutant library. Sci. Rep. 9, 590.

Article  PubMed  PubMed Central  Google Scholar 

Yamagami T., Ishino S., Kawarabayasi Y., Ishino Y. 2014. Mutant Taq DNA polymerases with improved elongation ability as a useful reagent for genetic engineering. Front. Microbiol. 5. 461.

Article  PubMed  PubMed Central  Google Scholar 

Minnick D.T., Bebenek K., Osheroff W.P., Turner R.M., Astatke M., Liu L., Kunkel T.A., Joyce C.M. 1999. Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment). J. Biol. Chem. 274, 3067–3075.

Article  CAS  PubMed  Google Scholar 

Yamagami T., Matsukawa H., Tsunekawa S., Kawarabayasi Y., Ishino S., Ishino Y. 2016. A longer finger-subdomain of family A DNA polymerases found by metagenomic analysis strengthens DNA binding and primer extension abilities. Gene. 576, 690–695.

Article  CAS  PubMed  Google Scholar 

Roberts R.J. 1995. On base flipping. Cell. 82, 9–12.

Article  CAS  PubMed  Google Scholar 

Suzuki M., Yoshida S., Adman E.T., Blank A., Loeb L.A. 2000. Thermus aquaticus DNA polymerase I mutants with altered fidelity. J. Biol. Chem. 275, 32728–32735.

Article  CAS  PubMed  Google Scholar 

Bernad A., Blanco L., Lázaro J., Martín G., Salas M. 1989. A conserved 3′→5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell. 59, 219–228.

Article  CAS  PubMed  Google Scholar 

Park Y., Choi H., Lee D.S., Kim Y. 1997. Improvement of the 3′–5′ exonuclease activity of Taq DNA polymerase by protein engineering in the active site. Mol. Cells. 7, 419–424.

CAS  PubMed 

留言 (0)

沒有登入
gif