New Zwitter-Ionic Oligonucleotides: Preparation and Complementary Binding

Curreri A., Sankholkar D., Mitragotri S., Zhao Z. 2022. RNA therapeutics in the clinic. Bioeng. Transl. Med. e10374.

Halloy F., Biscans A., Bujold K.E., Debacker A., Hill A.C., Lacroix A., Luige O., Strömberg R., Sundstrom L., Vogel J., Ghidini A. 2021. Innovative developments and emerging technologies in RNA therapeutics. RNA Biol. 19, 313–332.

Article  PubMed  Google Scholar 

Zhou L.Y., Qin Z., Zhu Y.H., He Z.Y., Xu T. 2019. Current RNA-based therapeutics in clinical trials. Curr. Gene Ther. 19, 172–196.

Article  PubMed  Google Scholar 

Quemener A.M., Centomo M.L., Sax S.L., Panella R. 2022. Small drugs, huge impact: the extraordinary impact of antisense oligonucleotides in research and drug development. Molecules. 27, 536.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crooke S.T., Liang X.H., Baker B.F., Crooke R.M. 2021. Antisense technology: a review. J. Biol. Chem. 296, 100416.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crooke S.T., Baker B.F., Crooke R.M., Liang X.H. 2021. Antisense technology: an overview and prospectus. Nat. Rev. Drug Discov. 20, 427–453.

Article  CAS  PubMed  Google Scholar 

Arzumanov A., Walsh A.P., Rajwanshi V.K., Kumar R., Wengel J., Gait M.J. 2001. Inhibition of HIV-1 Tat-dependent trans activation by steric block chimeric 2'-O-methyl/LNA oligoribonucleotides. Biochemistry. 40, 14645–14654.

Article  CAS  PubMed  Google Scholar 

Arechavala-Gomeza V., Khoo B., Aartsma-Rus A. 2014. Splicing modulation therapy in the treatment of genetic diseases. Appl. Clin. Genet. 7, 245–252.

PubMed  PubMed Central  Google Scholar 

Crooke S.T. 2017. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther. 27, 70–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eckstein F. 2014. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 24, 374–387.

Article  CAS  PubMed  Google Scholar 

Shen W., De Hoyos C.L., Migawa M.T., Vickers T.A., Sun H., Low A., Bell T.A. 3rd, Rahdar M., Mukhopadhyay S., Hart C.E., Bell M., Riney S., Murray S.F., Greenlee S., Crooke R.M., Liang X.H., Seth P.P., Crooke S.T. 2019. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat. Biotechnol. 37, 640–650.

Article  CAS  PubMed  Google Scholar 

Crooke S.T., Vickers TA., Liang X.H. 2020. Phosphorothioate modified oligonucleotide-protein interactions. Nucleic Acids Res. 48, 5235–5253.

Article  PubMed  PubMed Central  Google Scholar 

Shen W., De Hoyos C.L., Sun H., Vickers T.A., Liang X.H., Crooke S.T. 2018. Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res. 46, 2204–2217.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chelobanov B.P., Burakova E.A., Prokhorova D.V., Fokina A.A., Stetsenko D.A. 2017. New oligodeoxynucleotide derivatives containing N-(methanesulfonyl)-phosphoramidate (mesyl phosphoramidate) internucleotide group. Russ. J. Bioorg. Chem. 43, 664–668.

Article  CAS  Google Scholar 

Miroshnichenko S.K., Patutina O.A., Burakova E.A., Chelobanov B.P., Fokina A.A., Vlassov V.V., Altman S., Zenkova M.A., Stetsenko D.A. 2019. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates: improved biochemical and biological properties. Proc. Natl. Acad. Sci. U. S. A. 116, 1229–1234.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang X.H., Shen W., Sun H., Kinberger G.A., Prakash T.P., Nichols J.G., Crooke S.T. 2016. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity. Nucleic Acids Res. 44, 3892–3907.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laurent Q., Martinent R., Moreau D., Winssinger N., Sakai N., Matile S. 2021. Oligonucleotide phosphorothioates enter cells by thiol-mediated uptake. Angew. Chem. Int. Ed. Engl. 60, 19102–19106.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng M., Ducho C. 2018. Oligonucleotide analogues with cationic backbone linkages. Beilstein J. Org. Chem. 14, 1293–1308.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Danielsen M.B., Wengel J. 2021. Cationic oligonucleotide derivatives and conjugates: a favorable approach for enhanced DNA and RNA targeting oligonucleotides. Beilstein J. Org. Chem. 17, 1828–1848.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yanachkov I., Zavizion B., Metelev V., Stevens L.J., Tabatadze Y., Yanachkova M., Wright G., Krichevsky A.M., Tabatadze D.R. 2017. Self-neutralizing oligonucleotides with enhanced cellular uptake. Org. Biomol. Chem. 15, 1363–1380.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng M., Schmidtgall B., Ducho C. 2018. Enhanced stability of DNA oligonucleotides with partially zwitterionic backbone structures in biological media. Molecules. 23, 2941.

Article  PubMed  PubMed Central  Google Scholar 

Schmidtgall B., Kuepper A., Meng M., Grossmann T.N., Ducho C. 2018. Oligonucleotides with cationic backbone and their hybridization with DNA: interplay of base pairing and electrostatic attraction. Chem. Eur. J. 24, 1544–1553.

Article  CAS  PubMed  Google Scholar 

Prokhorova D.V., Chelobanov B.P., Burakova E.A., Fokina A.A., Stetsenko D.A. 2017. New oligodeoxyribonucleotide derivatives bearing internucleotide N-tosyl phosphoramidate groups: synthesis and complementary binding to DNA and RNA. Russ. J. Bioorg. Chem. 43, 38–42.

Article  CAS  Google Scholar 

Freier S.M., Altmann K.H. 1997. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res. 25, 4429–4443.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su Y., Fujii H., Burakova E.A., Chelobanov B.P., Fuji-i M., Stetsenko D.A., Filichev V.V. 2019. Neutral and negatively charged phosphate modifications altering thermal stability, kinetics of formation and monovalent ion dependence of DNA G-quadruplexes. Chem. Asian J. 14, 1212–1220.

Article  CAS  PubMed  Google Scholar 

Su Y., Edwards P.J.B., Stetsenko D.A., Filichev V.V. 2020. The importance of phosphates for DNA G-quadruplex formation: evaluation of zwitterionic G-rich oligodeoxynucleotides. ChemBioChem. 21, 2455–2466.

Article  CAS  PubMed  Google Scholar 

Su Y., Bayarjargal M., Hale T.K., Filichev V.V. 2021. DNA with zwitterionic and negatively charged phosphate modifications: formation of DNA triplexes, duplexes and cell uptake studies. Beilstein J. Org. Chem. 17, 749–761.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su Y., Raguraman P., Veedu R.N., Filichev V.V. 2022. Phosphorothioate modification improves exon-skipping of antisense oligonucleotides based on sulfonyl phosphoramidates in mdx mouse myotubes. Org. Biomol. Chem. 20, 3790–3797.

Article  CAS  PubMed  Google Scholar 

Beaucage S.L., Caruthers M.H. 1981. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22, 1859–1862.

Article  CAS  Google Scholar 

Stec W.J., Zon G., Egan W., Stec B. 1984. Automated solid-phase synthesis, separation, and stereochemistry of phosphorothioate analogs of oligodeoxyribonucleotides. J. Am. Chem. Soc. 106, 6077–6079.

Article  CAS  Google Scholar 

Kupryushkin M.S., Apukhtina V.S., Vasil’eva S.V., Pyshnyi D.V., Stetsenko D.A. 2015. A new simple and convenient method for the preparation of oligonucleotides containing pyrene or cholesterol residues. Izv. Akad. Nauk, Ser. Khim. 64, 1678–1681.

CAS  Google Scholar 

Levina A.S., Repkova M.N., Chelobanov B.P., Bessudnova E.V., Mazurkova M.A., Stetsenko D.A., Zarytova V.F. 2017. Impact of delivery method on antiviral activity of phosphodiester, phosphorothioate, and phosphoryl guanidine oligonucleotides in MDCK cells infected with H5N1 bird flu virus. Mol. Biol. (Moscow). 51, 633–638.

Article  CAS  Google Scholar 

Lomzov A.A., Kupryushkin M.S., Shernyukov A.V., Nekrasov M.D., Dovydenko I.S., Stetsenko D.A., Pyshnyi D.V. 2019. Diastereomers of a mono-substituted phosphoryl guanidine trideoxyribonucleotide: isolation and properties. Biochem. Biophys. Res. Commun. 513, 807–811.

Article  CAS  PubMed  Google Scholar 

Burakova E.A., Derzhalova A.Sh., Chelobanov B.P., Fokina A.A., Stetsenko D.A. 2019. New oligodeoxynucleotide derivatives containing N-(sulfonyl)-phosphoramide groups. Russ. J. Bioorg. Chem. 45, 662–668.

Article  CAS  Google Scholar 

Derzhalova A., Markov O., Fokina A., Shiohama Y., Zatsepin T., Fujii M., Zenkova M., Stetsenko D. 2021. Novel lipid-oligonucleotide conjugates containing long-chain sulfonyl phosphoramidate groups: synthesis and biological properties. Appl. Sci. 11, 1174.

Article  CAS  Google Scholar 

Heindl D. Polynucleotide containing a phosphate mimetic. Canadian Patent 2627208, 2006.

Heindl D., Kessler D., Schube A., Thuer W., Giraut A. 2008. Easy method for the synthesis of labeled oligonucleotides. Nucleic Acids Symp. Ser. 52, 405–406.

留言 (0)

沒有登入
gif