Targeting DNA polymerase β elicits synthetic lethality with mismatch repair deficiency in acute lymphoblastic leukemia

Pui CH, Yang JJ, Bhakta N, Rodriguez-Galindo C. Global efforts toward the cure of childhood acute lymphoblastic leukaemia. Lancet Child Adolesc Health. 2018;2:440–54. https://doi.org/10.1016/S2352-4642(18)30066-X

Article  PubMed  PubMed Central  Google Scholar 

Ribeiro RC, Antillon F, Pedrosa F, Pui CH. Global pediatric oncology: lessons from partnerships between high-income countries and low- to mid-income countries. J Clin Oncol. 2016;34:53–61. https://doi.org/10.1200/JCO.2015.61.9148

Article  CAS  PubMed  Google Scholar 

Bhojwani D, Pui CH. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14:e205–217. https://doi.org/10.1016/S1470-2045(12)70580-6

Article  PubMed  Google Scholar 

Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354:166–78. https://doi.org/10.1056/NEJMra052603

Article  CAS  PubMed  Google Scholar 

Li B, Brady SW, Ma X, Shen S, Zhang Y, Li Y, et al. Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood. 2020;135:41–55. https://doi.org/10.1182/blood.2019002220

Article  PubMed  PubMed Central  Google Scholar 

Li B, Li H, Bai Y, Kirschner-Schwabe R, Yang JJ, Chen Y, et al. Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat Med. 2015;21:563–71. https://doi.org/10.1038/nm.3840

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dieck CL, Ferrando A. Genetics and mechanisms of NT5C2-driven chemotherapy resistance in relapsed ALL. Blood. 2019;133:2263–8. https://doi.org/10.1182/blood-2019-01-852392

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swann PF, Waters TR, Moulton DC, Xu YZ, Zheng Q, Edwards M, et al. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science. 1996;273:1109–11. https://doi.org/10.1126/science.273.5278.1109

Article  CAS  PubMed  Google Scholar 

Fink D, Aebi S, Howell SB. The role of DNA mismatch repair in drug resistance. Clin Cancer Res. 1998;4:1–6.

CAS  PubMed  Google Scholar 

Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer. 2008;8:24–36. https://doi.org/10.1038/nrc2292

Article  CAS  PubMed  Google Scholar 

Yang F, Brady SW, Tang C, Sun H, Du L, Barz MJ, et al. Chemotherapy and mismatch repair deficiency cooperate to fuel TP53 mutagenesis and ALL relapse. Nat Cancer. 2021;2:819–34. https://doi.org/10.1038/s43018-021-00230-8

Article  CAS  PubMed  Google Scholar 

Koren G, Ferrazini G, Sulh H, Langevin AM, Kapelushnik J, Klein J, et al. Systemic exposure to mercaptopurine as a prognostic factor in acute lymphocytic leukemia in children. N Engl J Med. 1990;323:17–21. https://doi.org/10.1056/NEJM199007053230104

Article  CAS  PubMed  Google Scholar 

Relling MV, Hancock ML, Boyett JM, Pui CH, Evans WE. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood. 1999;93:2817–23.

Article  CAS  PubMed  Google Scholar 

Yuan B, O’Connor TR, Wang Y. 6-Thioguanine and S(6)-methylthioguanine are mutagenic in human cells. ACS Chem Biol. 2010;5:1021–7. https://doi.org/10.1021/cb100214b

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uribe-Luna S, Quintana-Hau JD, Maldonado-Rodriguez R, Espinosa-Lara M, Beattie KL, Farquhar D, et al. Mutagenic consequences of the incorporation of 6-thioguanine into DNA. Biochem Pharmacol. 1997;54:419–24. https://doi.org/10.1016/s0006-2952(97)00200-1

Article  CAS  PubMed  Google Scholar 

Diouf B, Cheng Q, Krynetskaia NF, Yang W, Cheok M, Pei D, et al. Somatic deletions of genes regulating MSH2 protein stability cause DNA mismatch repair deficiency and drug resistance in human leukemia cells. Nat Med. 2011;17:1298–303. https://doi.org/10.1038/nm.2430

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sancar A. DNA excision repair. Annu Rev Biochem. 1996;65:43–81. https://doi.org/10.1146/annurev.bi.65.070196.000355

Article  CAS  PubMed  Google Scholar 

Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58:235–63. https://doi.org/10.1002/em.22087

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sobol RW, Horton JK, Kuhn R, Gu H, Singhal RK, Prasad R, et al. Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature. 1996;379:183–6. https://doi.org/10.1038/379183a0

Article  CAS  PubMed  Google Scholar 

Prasad R, Shock DD, Beard WA, Wilson SH. Substrate channeling in mammalian base excision repair pathways: passing the baton. J Biol Chem. 2010;285:40479–88. https://doi.org/10.1074/jbc.M110.155267

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prasad R, Beard WA, Strauss PR, Wilson SH. Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. J Biol Chem. 1998;273:15263–70. https://doi.org/10.1074/jbc.273.24.15263

Article  CAS  PubMed  Google Scholar 

Wallace SS, Murphy DL, Sweasy JB. Base excision repair and cancer. Cancer Lett. 2012;327:73–89. https://doi.org/10.1016/j.canlet.2011.12.038

Article  CAS  PubMed  PubMed Central  Google Scholar 

McLeod C, Gout AM, Zhou X, Thrasher A, Rahbarinia D, Brady SW, et al. St. Jude Cloud: A pediatric cancer genomic data-sharing ecosystem. Cancer Discov. 2021;11:1082–99. https://doi.org/10.1158/2159-8290.CD-20-1230

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen YL, Tang C, Zhang MY, Huang WL, Xu Y, Sun HY, et al. Blocking ATM-dependent NF-kappaB pathway overcomes niche protection and improves chemotherapy response in acute lymphoblastic. Leukemia. 2019;33:2365–78. https://doi.org/10.1038/s41375-019-0458-0

Article  CAS  PubMed  Google Scholar 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23. https://doi.org/10.1126/science.1231143

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan CW, Shi J, Chen J, Wang B, Yu YH, Qin X, et al. Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell. 2014;25:778–93. https://doi.org/10.1016/j.ccr.2014.04.015

Article  CAS  PubMed  Google Scholar 

Gu L, Cline-Brown B, Zhang F, Qiu L, Li GM. Mismatch repair deficiency in hematological malignancies with microsatellite instability. Oncogene. 2002;21:5758–64. https://doi.org/10.1038/sj.onc.1205695

Article  CAS  PubMed  Google Scholar 

Colussi C, Parlanti E, Degan P, Aquilina G, Barnes D, Macpherson P, et al. The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool. Curr Biol. 2002;12:912–8. https://doi.org/10.1016/s0960-9822(02)00863-1

Article  CAS  PubMed  Google Scholar 

Macpherson P, Barone F, Maga G, Mazzei F, Karran P, Bignami M. 8-oxoguanine incorporation into DNA repeats in vitro and mismatch recognition by MutSalpha. Nucleic Acids Res. 2005;33:5094–105. https://doi.org/10.1093/nar/gki813

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waters TR, Swann PF. Cytotoxic mechanism of 6-thioguanine: hMutSalpha, the human mismatch binding heterodimer, binds to DNA containing S6-methylthioguanine. Biochemistry. 1997;36:2501–6. https://doi.org/10.1021/bi9621573

Article  CAS  PubMed  Google Scholar 

Svilar D, Goellner EM, Almeida KH, Sobol RW. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal. 2011;14:2491–507. https://doi.org/10.1089/ars.2010.3466

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madhusudan S, Smart F, Shrimpton P, Parsons JL, Gardiner L, Houlbrook S, et al. Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res. 2005;33:4711–24. https://doi.org/10.1093/nar/gki781

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seo Y, Kinsella TJ. Essential role of DNA base excision repair on survival in an acidic tumor microenvironment. Cancer Res. 2009;69:7285–93. https://doi.org/10.1158/0008-5472.CAN-09-0624

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin SA, McCabe N, Mullarkey M, Cummins R, Burgess DJ, Nakabeppu Y, et al. DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH2 or MLH1. Cancer Cell. 2010;17:235–48. https://doi.org/10.1016/j.ccr.2009.12.046

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif