Fabrication and characterization of bilayer scaffolds made of decellularized dermis/nanofibrous collagen for healing of full-thickness wounds

Yoon DS, Lee Y, Ryu HA, Jang Y, Lee KM, Choi Y, et al. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomater. 2016;1(38):59–68.

Article  Google Scholar 

Moura J, Rodrigues J, Goncalves M, Amaral C, Lima M, Carvalho E. Impaired T-cell differentiation in diabetic foot ulceration. Cell Mol Immunol. 2017;14(9):758–69.

Article  CAS  PubMed  Google Scholar 

Shen YI, Cho H, Papa AE, Burke JA, Chan XY, Duh EJ, et al. Engineered human vascularized constructs accelerate diabetic wound healing. Biomaterials. 2016;102:107–19.

Article  CAS  PubMed  Google Scholar 

Chong HC, Chan JS, Goh CQ, Gounko NV, Luo B, Wang X, et al. Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice. Mol Ther. 2014;22(9):1593–604.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brubaker AL, Rendon JL, Ramirez L, Choudhry MA, Kovacs EJ. Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. J Immunol. 2013;190(4):1746–57.

Article  CAS  PubMed  Google Scholar 

Sawada N, Jiang A, Takizawa F, Safdar A, Manika A, Tesmenitsky Y, et al. Endothelial PGC-1alpha mediates vascular dysfunction in diabetes. Cell Metab. 2014;19(2):246–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bermudez DM, Xu J, Herdrich BJ, Radu A, Mitchell ME, Liechty KW. Inhibition of stromal cell-derived factor-1alpha further impairs diabetic wound healing. J Vasc Surg. 2011;53(3):774–84.

Article  PubMed  PubMed Central  Google Scholar 

Milan PB, Lotfibakhshaiesh N, Joghataie MT, Ai J, Pazouki A, Kaplan DL, et al. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater. 2016;45:234–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Otero-Vinas M, Falanga V. Mesenchymal Stem Cells in Chronic Wounds: The Spectrum from Basic to Advanced Therapy. Adv Wound Care (New Rochelle). 2016;5(4):149–63.

Article  PubMed  Google Scholar 

Chen FM, Wu LA, Zhang M, Zhang R, Sun HH. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: promises, strategies, and translational perspectives. Biomaterials. 2011;32(12):3189–209.

Article  CAS  PubMed  Google Scholar 

Andreas K, Sittinger M, Ringe J. Toward in situ tissue engineering: chemokine-guided stem cell recruitment. Trends Biotechnol. 2014;32(9):483–92.

Article  CAS  PubMed  Google Scholar 

Dalonneau F, Liu XQ, Sadir R, Almodovar J, Mertani HC, Bruckert F, et al. The effect of delivering the chemokine SDF-1alpha in a matrix-bound manner on myogenesis. Biomaterials. 2014;35(15):4525–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bollag WB, Hill WD. CXCR4 in epidermal keratinocytes: crosstalk within the skin. J Invest Dermatol. 2013;133(11):2505–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho TK, Tsui J, Xu S, Leoni P, Abraham DJ, Baker DM. Angiogenic effects of stromal cell-derived factor-1 (SDF-1/CXCL12) variants in vitro and the in vivo expressions of CXCL12 variants and CXCR4 in human critical leg ischemia. J Vasc Surg. 2010;51(3):689–99.

Article  PubMed  Google Scholar 

Valenzuela-Fernandez A, Planchenault T, Baleux F, Staropoli I, Le-Barillec K, Leduc D, et al. Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem. 2002;277(18):15677–89.

Article  CAS  PubMed  Google Scholar 

Anderson EM, Kwee BJ, Lewin SA, Raimondo T, Mehta M, Mooney DJ. Local delivery of VEGF and SDF enhances endothelial progenitor cell recruitment and resultant recovery from ischemia. Tissue Eng Part A. 2015;21(7–8):1217–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang YC, Liu TJ. Mobilization of mesenchymal stem cells by stromal cell-derived factor-1 released from chitosan/tripolyphosphate/fucoidan nanoparticles. Acta Biomater. 2012;8(3):1048–56.

Article  CAS  PubMed  Google Scholar 

Takayama T, Dai J, Tachi K, Shohara R, Kasai H, Imamura K, et al. The potential of stromal cell-derived factor-1 delivery using a collagen membrane for bone regeneration. J Biomater Appl. 2017;31(7):1049–61.

Article  CAS  PubMed  Google Scholar 

Hivechi A, Milan PB, Modabberi K, Amoupour M, Ebrahimzadeh K, Gholipour AR, et al. Synthesis and characterization of exopolysaccharide encapsulated PCL/gelatin skin substitute for full-thickness wound regeneration. Polymers (Basel). 2021;13(6):854.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohammadi MR, Nojoomi A, Mozafari M, Dubnika A, Inayathullah M, Rajadas J. Nanomaterials engineering for drug delivery: a hybridization approach. J Mater Chem B. 2017;5(22):3995–4018.

Article  CAS  PubMed  Google Scholar 

Einipour SK, Sadrjahani M, Rezapour A. Preparation and evaluation of antibacterial wound dressing based on vancomycin-loaded silk/dialdehyde starch nanoparticles. Drug Deliv Transl Res. 2022 Feb 27.

Biondi M, Ungaro F, Quaglia F, Netti PA. Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev. 2008;60(2):229–42.

Article  CAS  PubMed  Google Scholar 

Naser Amini PBM, Vahid Hosseinpour Sarmadi, Bahareh Derakhshanmehr, Ahmad Hivechi, Fateme Khodaei, Masoud Hamidi, Sara Ashraf, Ghazaleh Larijani, Alireza Rezapour. Microorganism-derived biological macromolecules for tissue engineering. Front Med. 2022;16:358–377.

Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev. 2007;59(14):1392–412.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim HY, Lee BM, Kim IS, Jin TH, Ko KH, Ryu YJ. Fabrication of triblock copolymer of Poly (rho-dioxanone-co-L-lactide)-BlockPoly (ethylene glycol) Nonwoven mats by electrospinning and applications for wound dressing. Polym Mater Sci Eng. 2004;91.

Ivey JS, Abdollahi H, Herrera FA, Chang EI. Total muscle coverage versus AlloDerm human dermal matrix for implant-based breast reconstruction. Plast Reconstr Surg. 2019;143(1):1–6.

Article  CAS  PubMed  Google Scholar 

Peiman Brouki Milan NA, Moein Amoupour, Ali Amadikuchaksaraei, Alireza Rezapour, Farshid Sefat, et al. Scaffolds for regeneration of dermoepidermal skin tissue. Handbook of Tissue Engineering Scaffolds: Elsevier Science; 2019. p. 193–209.

Matouskova E, Broz L, Pokorna E, Konigova R. Prevention of burn wound conversion by allogeneic keratinocytes cultured on acellular xenodermis. Cell Tissue Bank. 2002;3(1):29–35.

Article  CAS  PubMed  Google Scholar 

Heath DE. A review of decellularized extracellular matrix biomaterials for regenerative engineering applications. Regenerative Engineering and Translational Medicine. 2019;5(2):155–66.

Article  CAS  Google Scholar 

Jun I, Han HS, Edwards J, Jeon H (2018) Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int J Mol Sci 19(3):745. https://doi.org/10.3390/ijms19030745

Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S (2016) A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 10(9):715–738. https://doi.org/10.1002/term.1978

Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C (2022) Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater 1015–1031 S2452199X2100431X. https://doi.org/10.1016/j.bioactmat.2021.09.014

Santschi M, Vernengo A, Eglin D, D’Este M, Wuertz-Kozak K. Decellularized matrix as a building block in bioprinting and electrospinning. Current Opinion in Biomedical Engineering. 2019;10:116–22.

Article  Google Scholar 

Rajan N, Habermehl J, Cote MF, Doillon CJ, Mantovani D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat Protoc. 2006;1(6):2753–8.

Article  CAS  PubMed  Google Scholar 

Heidari M, Bahrami SH, Ranjbar-Mohammadi M, Milan PB. Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;103: 109768.

Article  CAS  PubMed  Google Scholar 

Paris M, Porcelloni M, Binaschi M, Fattori D. Histone deacetylase inhibitors: from bench to clinic. J Med Chem. 2008;51(6):1505–29.

Article  CAS  PubMed  Google Scholar 

Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338(1):17–31.

Article  CAS  PubMed  Google Scholar 

Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11(5):384–400.

Article  CAS  PubMed  Google Scholar 

Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci USA. 2004;101(42):15064–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dowling DP, Miller IS, Ardhaoui M, Gallagher WM. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J Biomater Appl. 2011;26(3):327–47.

Article  CAS  PubMed  Google Scholar 

Gharibi R, Shaker A, Rezapour-Lactoee A, Agarwal S. Antibacterial and biocompatible hydrogel dressing based on gelatin- and castor-oil-derived biocidal agent. ACS Biomater Sci Eng. 2021;7(8):3633–47.

Article 

留言 (0)

沒有登入
gif