Development of hyaluronic acid–anchored polycaprolactone nanoparticles for efficient delivery of PLK1 siRNA to breast cancer

Dieterich M, Stubert J, Reimer T, Erickson N, Berling A. Influence of lifestyle factors on breast cancer risk. Breast Care (Basel). 2014;9(6):407–14. https://doi.org/10.1159/000369571.

Article  PubMed  Google Scholar 

Winkles JA, Alberts GF. Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene. 2005;24(2):260–6. https://doi.org/10.1038/sj.onc.1208219.

Article  CAS  PubMed  Google Scholar 

Degenhardt Y, Lampkin T. Targeting Polo-like kinase in cancer therapy. Clin Cancer Res. 2010;16(2):384–9. https://doi.org/10.1158/1078-0432.CCR-09-1380.

Article  CAS  PubMed  Google Scholar 

Hu K, Law JH, Fotovati A, Dunn SE. Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells. Breast Cancer Res. 2012;14(1):R22. https://doi.org/10.1186/bcr3107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sajid MI, Moazzam M, Kato S, Yeseom Cho K, Tiwari RK. Overcoming barriers for siRNA.

Bjorge JD, Pang A, Fujita DJ. Delivery of gene targeting siRNAs to breast cancer cells using a multifunctional peptide complex that promotes both targeted delivery and endosomal release. PLoS ONE. 2017;12(6): e0180578. https://doi.org/10.1371/journal.pone.0180578.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serrano-Sevilla I, Artiga Á, Mitchell SG, De Matteis L, de la Fuente JM. Natural polysaccharides for siRNA delivery: nanocarriers based on chitosan, hyaluronic acid, and their derivatives. Molecules. 2019;24(14):2570. https://doi.org/10.3390/molecules24142570.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: a novel approach in drug delivery. Eur Poly J. 2019;120:109191.

Tavares MR, Menezes LR, Filho JC, Cabral LM, Tavares MI. Surface-coated polycaprolactone nanoparticles with pharmaceutical application: structural and molecular mobility evaluation by TD-NMR. Polym Testing. 2017;60:39–48. https://doi.org/10.1016/j.polymertesting.2017.01.032.

Article  CAS  Google Scholar 

Grossen P, Witzigmann D, Sieber S, Huwyler J. PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J Control Release. 2017;260:46–60. https://doi.org/10.1016/j.jconrel.2017.05.028.

Article  CAS  PubMed  Google Scholar 

Yadav AK, Mishra P, Jain S, Mishra P, Mishra AK, Agrawal GP. Preparation and characterization of HA-PEG-PCL intelligent core-corona nanoparticles for delivery of doxorubicin. J Drug Target. 2008;16(6):464–78. https://doi.org/10.1080/10611860802095494.

Article  CAS  PubMed  Google Scholar 

Katas H, Raja MA, Lam KL. Development of chitosan nanoparticles as a stable drug delivery system for protein/siRNA. Int J Biomater. 2013;2013: 146320. https://doi.org/10.1155/2013/146320.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, et al. Enhanced siRNA delivery and selective apoptosis induction in H1299 cancer cells by layer-by-layer-assembled Se nanocomplexes: toward more efficient cancer therapy. Front Mol Biosci. 2021;8:639184. Published 2021 Apr 20. https://doi.org/10.3389/fmolb.2021.639184.

Joseph J, Seervi M, Sobhan PK, Retnabai ST. High throughput ratio imaging to profile caspase activity: potential application in multiparameter high content apoptosis analysis and drug screening. PLoS ONE. 2011;6(5): e20114. https://doi.org/10.1371/journal.pone.0020114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lekshmi A, Varadarajan SN, Lupitha SS, et al. A quantitative real-time approach for discriminating apoptosis and necrosis. Cell Death Discov. 2017;3:16101. https://doi.org/10.1038/cddiscovery.2016.101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kundu AK, Iyer SV, Chandra S, Adhikari AS, Iwakuma T, Mandal TK. Novel siRNA formulation to effectively knockdown mutant p53 in osteosarcoma. PLoS One. 2017;12(6):e0179168. Published 2017 Jun 21. https://doi.org/10.1371/journal.pone.0179168.

Mu X., Lu H, Fan, Yan S, Hu K. Efficient delivery of therapeutic siRNA with nanoparticles induces apoptosis in prostate cancer cells. J. Nanomater. 2018, 2018, 1–10.  https://doi.org/10.1155/2018/4719790.

Tian G, Pan R, Zhang B, et al. Liver-targeted combination therapy basing on glycyrrhizic acid-modified DSPE-PEG-PEI nanoparticles for co-delivery of doxorubicin and Bcl-2 siRNA. Front Pharmacol. 2019;10:4. https://doi.org/10.3389/fphar.2019.00004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian Y, Pan ZY, J., Lu, N., Wang, S., Lu, G. Gold nanoparticles increase PLK1-specific small interfering RNA transfection and induce apoptosis of drug resistance breast cancer cells. J Nanomat. 2015;2015:1–9. https://doi.org/10.1155/2015/720198.

Article  CAS  Google Scholar 

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4.

Article  CAS  PubMed  Google Scholar 

Kholiya F, Chatterjee S, Bhojani G, et al. Seaweed polysaccharide derived bioaldehyde nanocomposite: potential application in anticancer therapeutics. Carbohydr Polym. 2020;240: 116282. https://doi.org/10.1016/j.carbpol.2020.116282.

Article  CAS  PubMed  Google Scholar 

Jiang G, Park K, Kim J, et al. Hyaluronic acid-polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolymers. 2008;89(7):635–42. https://doi.org/10.1002/bip.20978.

Article  CAS  PubMed  Google Scholar 

Chitosan-graft-PAMAM–alginate core–shell nanoparticles: a safe and promising oral insulin carrier in an animal model (Suppl.). RSC Adv. 2015:5:93995–94007. https://doi.org/10.1039/C5RA17729D.

Yue PF, Lu XY, Zhang ZZ, et al. The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion. AAPS PharmSciTech. 2009;10(2):376–83. https://doi.org/10.1208/s12249-009-9216-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng YY, Diaz-Dussan D, Vani J, Hao X, Kumar P, Narain R. Achieving Safe and Highly Efficient Epidermal Growth Factor Receptor Silencing in Cervical Carcinoma by Cationic Degradable Hyperbranched Polymers. ACS Appl Bio Mater. 2018;1(4):961–6. https://doi.org/10.1021/acsabm.8b00371.

Zhang J, Wang X, Cui W, et al. Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Nat Commun. 2013;4:2157. https://doi.org/10.1038/ncomms3157.

Article  CAS  PubMed  Google Scholar 

Ma YS, Yao CN, Liu HC, et al. Quercetin induced apoptosis of human oral cancer SAS cells through mitochondria and endoplasmic reticulum mediated signaling pathways. Oncol Lett. 2018;15(6):9663–72. https://doi.org/10.3892/ol.2018.8584.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ouahab A, Cheraga N, Onoja V, Shen Y, Tu J. Novel pH-sensitive charge-reversal cell penetrating peptide conjugated PEG-PLA micelles for docetaxel delivery: in vitro study. Int J Pharm. 2014;466(1–2):233–45. https://doi.org/10.1016/j.ijpharm.2014.03.009.

Article  CAS  PubMed  Google Scholar 

Baek JS, Na YG, Cho CW. Sustained cytotoxicity of wogonin on breast cancer cells by encapsulation in solid lipid nanoparticles. Nanomaterials (Basel). 2018;8(3):159. https://doi.org/10.3390/nano8030159.

Article  CAS  PubMed  Google Scholar 

Namvar F, Azizi S, Rahman HS, et al. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite. Onco Targets Ther. 2016;9:4549–4559. Published 2016 Jul 26. https://doi.org/10.2147/OTT.S95962.

Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J. The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials. 2010;31(2):358–65. https://doi.org/10.1016/j.biomaterials.2009.09.048.

Article  CAS  PubMed  Google Scholar 

Wu Y, Wang W, Chen Y, et al. The investigation of polymer-siRNA nanoparticle for gene therapy of gastric cancer in vitro. Int J Nanomedicine. 2010;5:129–36. https://doi.org/10.2147/ijn.s8503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou L, Song Z, Xu Z, Wu Y, Shi W. Folate-mediated targeted delivery of siPLK1 by leucine-bearing polyethylenimine. Int J Nanomedicine. 2020;15:1397–408. https://doi.org/10.2147/IJN.S227289.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif