Modification of Extracellular Vesicle Surfaces: An Approach for Targeted Drug Delivery

Kesharwani P, Taurin S, Greish K, editors. Theory and applications of nonparenteral nanomedicines. Amsterdam: Elsevier; 2020.

Google Scholar 

Wang Q, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 2013;4(1):1–13. https://doi.org/10.1038/ncomms2886.

Article  CAS  Google Scholar 

Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012.

Article  CAS  PubMed  Google Scholar 

Liu F, et al. Towards site-specific nanoparticles for drug delivery application: preparation, characterization and release performance. Chem Pap. 2017;71(12):2385–94. https://doi.org/10.1007/s11696-017-0233-5.

Article  CAS  Google Scholar 

He X, et al. A novel peptide probe for imaging and targeted delivery of liposomal doxorubicin to lung tumor. Mol Pharm. 2011;8(2):430–8. https://doi.org/10.1021/mp100266g.

Article  CAS  PubMed  Google Scholar 

Mitchell MJ, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discovery. 2021;20(2):101–24. https://doi.org/10.1038/s41573-020-0090-8.

Article  CAS  PubMed  Google Scholar 

Andriyanov AV, et al. Therapeutic efficacy of combined PEGylated liposomal doxorubicin and radiofrequency ablation: comparing single and combined therapy in young and old mice. J Control Release. 2017;257:2–9. https://doi.org/10.1016/j.jconrel.2017.02.018.

Article  CAS  PubMed  Google Scholar 

Maier MA, et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther. 2013;21(8):1570–8. https://doi.org/10.1038/mt.2013.124.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discovery. 2005;4(2):145–60. https://doi.org/10.1038/nrd1632.

Article  CAS  PubMed  Google Scholar 

Dolatabadi JEN, Omidi Y. Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems. TrAC Trends Anal Chem. 2016;77:100–8. https://doi.org/10.1016/j.trac.2015.12.016.

Article  CAS  Google Scholar 

Fenton OS, et al. Advances in biomaterials for drug delivery. Adv Mater. 2018;30(29):1705328. https://doi.org/10.1002/adma.201705328.

Article  CAS  Google Scholar 

Gomes-da-Silva LC, et al. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res. 2012;45(7):1163–71. https://doi.org/10.1021/ar300048p.

Article  CAS  PubMed  Google Scholar 

Pardridge WM. Transport of small molecules through the blood-brain barrier: biology and methodology. Adv Drug Deliv Rev. 1995;15(1–3):5–36. https://doi.org/10.1016/0169-409X(95)00003-P.

Article  CAS  PubMed  Google Scholar 

Kim MS, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomed Nanotechnol Biol Med. 2016;12(3):655–64. https://doi.org/10.1016/j.nano.2015.10.012.

Article  CAS  Google Scholar 

Kim WJ, Kim SW. Efficient siRNA delivery with non-viral polymeric vehicles. Pharm Res. 2009;26(3):657–66. https://doi.org/10.1007/s11095-008-9774-1.

Article  CAS  PubMed  Google Scholar 

Simons M, Raposo G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575–81. https://doi.org/10.1007/s00441-012-1428-2.

Article  CAS  PubMed  Google Scholar 

Wei H, et al. A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro. Int J Nanomed. 2019;14:8603. https://doi.org/10.2147/IJN.S218988.

Article  CAS  Google Scholar 

Sedykh SE, et al. Milk exosomes: isolation, biochemistry, morphology, and perspectives of use. Extracell Vesicles Import Hum Health. 2020. https://doi.org/10.5772/intechopen.85416.

Article  Google Scholar 

Wu M, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci. 2017;114(40):10584–9. https://doi.org/10.1073/pnas.1709210114.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He L, et al. A highly efficient method for isolating urinary exosomes. Int J Mol Med. 2019;43(1):83–90. https://doi.org/10.3892/ijmm.2018.3944.

Article  CAS  PubMed  Google Scholar 

Bai R, et al. Induction of immune-related gene expression by seminal exosomes in the porcine endometrium. Biochem Biophys Res Commun. 2018;495(1):1094–101. https://doi.org/10.1016/J.BBRC.2017.11.100.

Article  CAS  PubMed  Google Scholar 

Zlotogorski-Hurvitz A, et al. Human saliva-derived exosomes: comparing methods of isolation. J Histochem Cytochem. 2015;63(3):181–9. https://doi.org/10.1369/0022155414564219.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asea A, et al. Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol. 2008;79(1):12–7. https://doi.org/10.1016/j.jri.2008.06.001.

Article  CAS  PubMed  Google Scholar 

Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83. https://doi.org/10.1083/jcb.201211138.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Théry C, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750.

Article  PubMed  PubMed Central  Google Scholar 

Johnstone R. Maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins. Biochem Cell Biol. 1992;70(3–4):179–90. https://doi.org/10.1139/o92-028.

Article  CAS  PubMed  Google Scholar 

Mathivanan S, Simpson RJ. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics. 2009;9(21):4997–5000. https://doi.org/10.1002/pmic.200900351.

Article  CAS  PubMed  Google Scholar 

Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9. https://doi.org/10.1038/ncb1596.

Article  CAS  PubMed  Google Scholar 

Llorente A, et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2013;1831(7):1302–9. https://doi.org/10.1016/j.bbalip.2013.04.011.

Article  CAS  PubMed  Google Scholar 

Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51. https://doi.org/10.1038/nbt.3330.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu M, et al. Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA. Int J Pharm. 2018;550(1–2):100–13. https://doi.org/10.1016/j.ijpharm.2018.08.040.

Article  CAS  PubMed  Google Scholar 

Haney MJ, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30. https://doi.org/10.1016/j.jconrel.2015.03.033.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Andaloussi S, et al. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc. 2012;7(12):2112–26. https://doi.org/10.1038/nprot.2012.131.

Article  CAS  PubMed  Google Scholar 

Sun D, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–14. https://doi.org/10.1038/mt.2010.105.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Somiya M, Yoshioka Y, Ochiya T. Biocompatibility of highly purified bovine milk-derived extracellular vesicles. J Extracell Vesicles. 2018;7(1):1440132. https://doi.org/10.1080/20013078.2018.1440132.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar S, et al. Cloaked exosomes: biocompatible, durable, and degradable encapsulation. Small. 2018;14(34):1802052. https://doi.org/10.1002/smll.201802052.

Article  CAS  Google Scholar 

Lv L-H, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem. 2012;287(19):15874–85. https://doi.org/10.1074/jbc.M112.340588.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif