Investigating the role of obstructive pulmonary diseases and eosinophil count at admission on all-cause mortality in SARS-CoV-2 patients

Drummond MB. Obstructive airway disease in urban populations. Curr Opin Pulm Med. 2014;20:180–5.

Article  PubMed  PubMed Central  Google Scholar 

Global Initiative for Asthma. Global strategy for asthma management and prevention. 2022.

Google Scholar 

Loftus PA, Wise SK. Epidemiology and economic burden of asthma. Int Forum Allergy Rhinol. 2015;5:S7–S10. https://doi.org/10.1002/alr.21547.

Article  PubMed  Google Scholar 

Loftus PA, Wise SK. Epidemiology of asthma. Curr Opin Otolaryngol Head Neck Surg. 2016;24:245–9.

Article  PubMed  Google Scholar 

Global Initiative for Chronic Obstructive Lung Disease. Global strategy for diagnosis, management, and prevention of chronic obstructive pulmonary disease. 2022.

Google Scholar 

Bartal M. COPD and tobacco smoke. Monaldi Arch Chest Dis. 2005; https://doi.org/10.4081/monaldi.2005.623.

Article  PubMed  Google Scholar 

Carmona-Pírez J, Poblador-Plou B, Ioakeim-Skoufa I, et al. Multimorbidity clusters in patients with chronic obstructive airway diseases in the EpiChron Cohort. Sci Rep. 2021;11:4784.

Article  PubMed  PubMed Central  Google Scholar 

Lindberg A, Lindberg L, Sawalha S, et al. Large underreporting of COPD as cause of death-results from a population-based cohort study. Respir Med. 2021;186:106518.

Article  PubMed  Google Scholar 

Quaderi SA, Hurst JR. The unmet global burden of COPD. Glob Health Epidemiol Genomics. 2018;3:e4.

Article  CAS  Google Scholar 

Holland AE, Harrison SL, Brooks D. Multimorbidity, frailty and chronic obstructive pulmonary disease. Chron Respir Dis. 2016;13:372–82. https://doi.org/10.1177/1479972316670104.

Article  PubMed  PubMed Central  Google Scholar 

Boulet L‑P, Hanania NA. The many faces of asthma-chronic obstructive pulmonary disease overlap. Curr Opin Pulm Med. 2019;25:1–10.

Article  PubMed  Google Scholar 

Mekov E, Nuñez A, Sin DD, et al. Update on Asthma–COPD Overlap (ACO): A narrative review. Int J Chron Obstruct Pulmon Dis. 2021;16:1783–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

King Han M, Wenzel S. Asthma and COPD overlap (ACO). UpToDate. 2022. https://www.uptodate.com/contents/asthma-and-copd-overlap-aco. Accessed 22 Jan 2023.

Howell D, Verma H, Ho KS, et al. Asthma and COVID-19: lessons learned and questions that remain. Expert Rev Respir Med. 2021;15:1377–86. https://doi.org/10.1080/17476348.2021.1985763.

Article  CAS  PubMed  Google Scholar 

Schwartz J, Birnbaum B, Ballenberger M, et al. COVID-19 and obstructive lung disease: are COPD and asthma risk factors for severe COVID-19? Evaluating the data from the largest health system in New York State. In: Am. Thorac. Soc. Int. Conf. 2021. p. 2021. Abstract A1276.

Google Scholar 

Terry PD, Heidel RE, Dhand R. Asthma in adult patients with COVID-19. Prevalence and risk of severe disease. Am J Respir Crit Care Med. 2021;203:893–905. https://doi.org/10.1164/rccm.202008-3266OC.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lacedonia D, Scioscia G, Santomasi C, et al. Impact of smoking, COPD and comorbidities on the mortality of COVID-19 patients. Sci Rep. 2021;11:19251.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Izquierdo JL, Almonacid C, González Y, et al. The impact of COVID-19 on patients with asthma. Eur Respir J. 2021;57:2003142. https://doi.org/10.1183/13993003.03142-2020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar V, Abbas AK, Fausto N, Robbins SL, RSC. Robbins and Cotran pathologic basis of disease. Philadelphia: Elsevier Saunders; 2005.

Google Scholar 

Kanuru S, Sapra A. Eosinophilia. StatPearls. 2021. https://www.ncbi.nlm.nih.gov/books/NBK560929/. Access date: May 1, 2022

Singh D, Kolsum U, Brightling CE, et al. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J. 2014;44:1697–700. https://doi.org/10.1183/09031936.00162414.

Article  PubMed  Google Scholar 

Hartl S, Breyer-Kohansal R, Breyer MK, et al. Blood eosinophils and obstructive lung diseases—results from the population-based Austrian LEAD Study. Epidemiology. Eur Respir Soc. 2017; https://doi.org/10.1183/1393003.congress-2017.PA2631.

Article  Google Scholar 

Annangi S, Nutalapati S, Sturgill J, et al. Eosinophilia and fractional exhaled nitric oxide levels in chronic obstructive lung disease. Thorax. 2022;77:351.

Article  PubMed  Google Scholar 

David B, Bafadhel M, Koenderman L, et al. Eosinophilic inflammation in COPD: from an inflammatory marker to a treatable trait. Thorax. 2021;76:188–95. https://doi.org/10.1136/thoraxjnl-2020-215167.

Article  PubMed  Google Scholar 

Outh R, Boutin C, Gueudet P, et al. Eosinopenia <100/μL as a marker of active COVID-19: An observational prospective study. J Microbiol Immunol Infect. 2021;54:61–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan B, Yang J, Xie Y, et al. Relationship between blood eosinophil levels and COVID-19 mortality. World Allergy Organ J. 2021;14:100521.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roca E, Ventura L, Zattra CM, et al. EOSINOPENIA: an early, effective and relevant COVID-19 biomarker? QJM. 2021;114:68–9.

Article  CAS  PubMed  Google Scholar 

Ferchichi M, Khalfallah I, Louhaichi S, et al. Eosinophils and COVID-19 prognosis. Mech lung Inj repair. Eur Respir Soc. 2021; https://doi.org/10.1183/13993003.congress-2021.PA3621.

Article  Google Scholar 

Hirosawa T, Harada Y, Morinaga K, et al. Eosinopenia as a diagnostic marker of bloodstream infection in a general internal medicine setting: a cohort study. BMC Infect Dis. 2020;20:85. https://doi.org/10.1186/s12879-020-4814-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Partouche B, Pepin M, de Farcy PM, et al. Persistent eosinopenia is associated with in-hospital mortality among older patients: unexpected prognostic value of a revisited biomarker. BMC Geriatr. 2021;21:557. https://doi.org/10.1186/s12877-021-02515-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

ClinicalTrials.gov. Registry of hospitalized patients in university hospital Dubrava respiratory center (COVID-19). https://clinicaltrials.gov/ct2/show/study/NCT05151094. Access date: May 1, 2022

Lucijanic M, Demaria M, Gnjidic J, et al. Higher ferritin levels in COVID-19 patients are associated with hyperinflammation, worse prognosis, and more bacterial infections without pronounced features of hemophagocytosis. Ann Hematol. 2022;101:1119–21. https://doi.org/10.1007/s00277-022-04813-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

JAMOVI. The-jamovi-project. 2020. https://www.jamovi.org. Access date: May 1, 2022

MedCalc Software. MedCalc® Statistical software. 2022. https://www.medcalc.org. Access date: May 1, 2022

Comoglu S, Kant A. Does the Charlson comorbidity index help predict the risk of death in COVID-19 patients? North Clin Istanbul. 2022;9:117–21.

Google Scholar 

Charlson ME, Carrozzino D, Guidi J, et al. Charlson comorbidity index: a critical review of clinimetric properties. Psychother Psychosom. 2022;91:8–35.

Article  PubMed  Google Scholar 

Charlson M, Szatrowski TP, Peterson J, et al. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47:1245–51.

Article  CAS  PubMed  Google Scholar 

Ahmed J, Avendaño Capriles CA, Avendaño Capriles NM, et al. The impact of Charlson comorbidity index on mortality from SARS-CoV‑2 virus infection. Cureus. 2021;13:e19937.

PubMed  PubMed Central  Google Scholar 

von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61:344–9.

Article  Google Scholar 

Lucijanić M, Stojić J, Atić A, et al. Clinical and prognostic significance of C‑reactive protein to albumin ratio in hospitalized coronavirus disease 2019 (COVID-19) patients. Wien Klin Wochenschr. 2022;134:377–84. https://doi.org/10.1007/s00508-021-01999-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

World Health Organization. Clinical management of COVID-19: interim guidance. 2020. https://apps.who.int/iris/handle/10665/332196. Access date: May 1, 2022

Xuan W, Jiang X, Huang L, et al. Predictive value of eosinophil count on COVID-19 disease progression and outcomes, a retrospective study of Leishenshan hospital in Wuhan, China. J Intensive Care Med. 2022;37:359–65. https://doi.org/10.1177/08850666211037326.

Article  PubMed  Google Scholar 

Klion AD, Ackerman SJ, Bochner BS. Contributions of Eosinophils to human health and disease. Annu Rev Pathol Mech Dis. 2020;15:179–209. https://doi.org/10.1146/annurev-pathmechdis-012419-032756.

Article  CAS  Google Scholar 

Rosenberg HF, Dyer KD, Domachowske JB. Eosinophils and their interactions with respiratory virus pathogens. Immunol Res. 2009;43:128–37. https://doi.org/10.1007/s12026-008-8058-5.

Article  PubMed  PubMed Central  Google Scholar 

Callaway Z, Kim CK. Respiratory viruses, Eosinophilia and their roles in childhood asthma. Int Arch Allergy Immunol. 2011;155:1–11.

Article  PubMed  Google Scholar 

Isobe Y, Kato T, Arita M. Emerging roles of eosinophils and eosinophil-derived lipid mediators in the resolution of inflammation. Front Immunol. 2012;

留言 (0)

沒有登入
gif