Sustained Hyperammonemia Activates NF-κB in Purkinje Neurons Through Activation of the TrkB-PI3K-AKT Pathway by Microglia-Derived BDNF in a Rat Model of Minimal Hepatic Encephalopathy

Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14(12):851–858. https://doi.org/10.1038/nrn3587

Article  CAS  PubMed  Google Scholar 

Shawcross DL, Davies NA, Williams R, Jalan R (2004) Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol 40(2):247–254. https://doi.org/10.1016/j.jhep.2003.10.016

Article  CAS  PubMed  Google Scholar 

Felipo V, Urios A, Montesinos E, Molina I, Garcia-Torres ML, Civera M, Olmo JA, Ortega J et al (2012) Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis 27(1):51–58. https://doi.org/10.1007/s11011-011-9269-3

Article  CAS  PubMed  Google Scholar 

Balzano T, Dadsetan S, Forteza J, Cabrera-Pastor A, Taoro-Gonzalez L, Malaguarnera M, Gil-Perotin S, Cubas-Nuñez L et al (2020) Chronic hyperammonemia induces peripheral inflammation that leads to cognitive impairment in rats: Reversed by anti-TNFα treatment. J Hepatol 73(3):582–592. https://doi.org/10.1016/j.jhep.2019.01.008

Article  CAS  PubMed  Google Scholar 

Hernández-Rabaza V, Cabrera-Pastor A, Taoro-González L, Malaguarnera M, Agustí A, Llansola M, Felipo V (2016) Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane. J Neuroinflammation 13:41. https://doi.org/10.1186/s12974-016-0505-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernandez-Rabaza V, Cabrera-Pastor A, Taoro-Gonzalez L, Gonzalez-Usano A, Agusti A, Balzano T, Llansola M, Felipo V (2016) Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflammation 13(1):83. https://doi.org/10.1186/s12974-016-0549-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cabrera-Pastor A, Balzano T, Hernández-Rabaza V, Malaguarnera M, Llansola M, Felipo V (2018) Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Brain Behav Immun 69:386–398. https://doi.org/10.1016/j.bbi.2017.12.013

Article  CAS  PubMed  Google Scholar 

Cabrera-Pastor A, Llansola M, Montoliu C, Malaguarnera M, Balzano T, Taoro-Gonzalez L, García-García R, Mangas-Losada A et al (2019) Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: underlying mechanisms and therapeutic implications. Acta Physiol (Oxf) 226(2):e13270. https://doi.org/10.1111/apha.13270

Article  CAS  PubMed  Google Scholar 

Butz M, Timmermann L, Braun M, Groiss SJ, Wojtecki L, Ostrowski S, Krause H, Pollok B et al (2010) Motor impairment in liver cirrhosis without and with minimal hepatic encephalopathy. Acta Neurol Scand 122(1):27–35. https://doi.org/10.1111/j.1600-0404.2009.01246.x

Article  CAS  PubMed  Google Scholar 

Felipo V, Urios A, Giménez-Garzó C, Cauli O, Andrés-Costa MJ, González O, Serra MA, Sánchez-González J et al (2014) Non invasive blood flow measurement in cerebellum detects minimal hepatic encephalopathy earlier than psychometric tests. World J Gastroenterol 20(33):11815–11825. https://doi.org/10.3748/wjg.v20.i33.11815

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hassan SS, Baumgarten TJ, Ali AM, Füllenbach ND, Jördens MS, Häussinger D, Butz M, Schnitzler A et al (2019) Cerebellar inhibition in hepatic encephalopathy. Clin Neurophysiol 130(6):886–892. https://doi.org/10.1016/j.clinph.2019.02.020

Article  PubMed  Google Scholar 

Cauli O, Mansouri MT, Agusti A, Felipo V (2009) Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Gastroenterology 136(4):1359–67. https://doi.org/10.1053/j.gastro.2008.12.057. (e1-2)

Article  CAS  PubMed  Google Scholar 

Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, Katsuki M, Aiba A (2000) mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288(5472):1832–1835. https://doi.org/10.1126/science.288.5472.1832

Article  CAS  PubMed  Google Scholar 

Barski JJ, Hartmann J, Rose CR, Hoebeek F, Mörl K, Noll-Hussong M, De Zeeuw CI, Konnerth A et al (2003) Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination. J Neurosci 23(8):3469–3477. https://doi.org/10.1523/JNEUROSCI.23-08-03469.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gutierrez DV, Mark MD, Masseck O, Maejima T, Kuckelsberg D, Hyde RA, Krause M, Kruse W et al (2011) Herlitze S Optogenetic control of motor coordination by Gi/o protein-coupled vertebrate rhodopsin in cerebellar Purkinje cells. J Biol Chem 286(29):25848–58. https://doi.org/10.1074/jbc.M111.253674

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou JH, Wang XT, Zhou L, Zhou L, Xu FX, Su LD, Wang H, Jia F et al (2017) Ablation of TFR1 in Purkinje cells inhibits mGlu1 trafficking and impairs motor coordination, but not autistic-like behaviors. J Neurosci 37(47):11335–11352. https://doi.org/10.1523/JNEUROSCI.1223-17.2017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Redondo J, Kemp K, Hares K, Rice C, Scolding N, Wilkins A (2015) Purkinje cell pathology and loss in multiple sclerosis cerebellum. Brain Pathol 25(6):692–700. https://doi.org/10.1111/bpa.12230

Article  CAS  PubMed  Google Scholar 

Mavroudis I, Petridis F, Kazis D, Njau SN, Costa V, Baloyannis SJ (2019) Purkinje cells pathology in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 34(7–8):439–449. https://doi.org/10.1177/1533317519859200

Article  PubMed  Google Scholar 

Mavroudis IA, Petrides F, Manani M et al (2017) Purkinje cells pathology in schizophrenia. A morphometric approach. Rom J Morphol Embryol 58(2):419–424

PubMed  Google Scholar 

Llansola M, Montoliu C, Agusti A, Hernandez-Rabaza V, Cabrera-Pastor A, Gomez-Gimenez B, Malaguarnera M, Dadsetan S et al (2015) Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy. Neurochem Int 88:15–19. https://doi.org/10.1016/j.neuint.2014.10.011

Article  CAS  PubMed  Google Scholar 

Balzano T, Arenas YM, Dadsetan S, Forteza J, Gil-Perotin S, Cubas-Nuñez L, Casanova B, Gracià F et al (2020) Sustained hyperammonemia induces TNFα IN Purkinje neurons by activating the TNFR1-NF-κB pathway. J Neuroinflammation 17(1):70. https://doi.org/10.1186/s12974-020-01746-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qie S, Chu C, Li W, Wang C, Sang N (2014) ErbB2 activation upregulates glutaminase 1 expression which promotes breast cancer cell proliferation. J Cell Biochem 115(3):498–509. https://doi.org/10.1002/jcb.24684

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crews FT, Vetreno RP (2016) Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology (Berl) 233(9):1543–57. https://doi.org/10.1007/s00213-015-3906-1

Article  CAS  PubMed  Google Scholar 

Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2(1):17023. https://doi.org/10.1038/sigtrans.2017.23

Jiang X, Zhu D, Okagaki P, Lipsky R, Wu X, Banaudha K, Mearow K, Strauss KI et al (2003) N-methyl-D-aspartate and TrkB receptor activation in cerebellar granule cells: an in vitro model of preconditioning to stimulate intrinsic survival pathways in neurons. Ann N Y Acad Sci 993:134–45. https://doi.org/10.1111/j.1749-6632.2003.tb07522.x. (discussion 159-60)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blondy S, Christou N, David V, Verdier M, Jauberteau MO, Mathonnet M, Perraud A (2019) Neurotrophins and their involvement in digestive cancers. Cell Death Dis 10(2):123. https://doi.org/10.1038/s41419-019-1385-8

Article  PubMed  PubMed Central  Google Scholar 

Yang W, Liu Y, Xu QQ, Xian YF, Lin ZX (2020) Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/AKT/GSK-3β pathway in experimental models of Alzheimer’s disease. Oxid Med Cell Longev 2020:4754195. https://doi.org/10.1155/2020/4754195

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aravamudan B, Thompson M, Pabelick C, Prakash YS (2012) Brain-derived neurotrophic factor induces proliferation of human airway smooth muscle cells. J Cell Mol Med 16(4):812–823. https://doi.org/10.1111/j.1582-4934.2011.01356.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen T, Ma Z, Zhu L, Jiang W, Wei T, Zhou R, Luo F, Zhang K et al (2016) Suppressing receptor-interacting protein 140: a new sight for salidroside to treat cerebral ischemia. Mol Neurobiol 53(9):6240–6250. https://doi.org/10.1007/s12035-015-9521-7

Article  CAS  PubMed  Google Scholar 

Tao W, Wang H, Su Q, Chen Y, Xue W, Xia B, Duan J, Chen G (2016) Paeonol attenuates lipopolysaccharide-induced depressive-like behavior in mice. Psychiatry Res 238:116–121. https://doi.org/10.1016/j.psychres.2016.02.033

Article  CAS  PubMed  Google Scholar 

Arenas YM, Balzano T, Ivaylova G, Llansola M, Felipo V (2022) The S1PR2-CCL2-BDNF-TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol Appl Neurobiol 48(4):e12799. https://doi.org/10.1111/nan.12799

Felipo V, Miñana MD, Grisolía S (1988) Long-term ingestion of ammonium increases acetylglutamate and urea levels without affecting the amount of carbamoyl-phosphate synthase. Eur J Biochem 176(3):567–571

Article  CAS  PubMed  Google Scholar 

Taoro-Gonzalez L, Arenas YM, Cabrera-Pastor A, Felipo V (2018) Hyperammonemia alters membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus by enhancing activation of the IL-1 receptor: underlying mechanisms. J Neuroinflammation 15:36

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif