Re-Thinking the Organization of Cortico-Basal Ganglia-Thalamo-Cortical Loops

Lecciso F, Colombo B. Beyond the cortico-centric models of cognition: the role of subcortical functioning in neurodevelopmental disorders. Front Psychol. 2019.

Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75.

Article  Google Scholar 

DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13:281–5.

Article  Google Scholar 

Helie S, Chakravarthy S, Moustafa AA. Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models. Front Comput Neurosci. 2013.

Niv Y. Reinforcement learning in the brain. J Math Psychol. 2009;53:139–54.

Article  MATH  MathSciNet  Google Scholar 

Alexander GE, DeLong MR, Strick LP. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.

Article  Google Scholar 

Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13:266–70.

Article  Google Scholar 

Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science. 1993;259:819–21.

Article  Google Scholar 

Seger CA. The involvement of corticostriatal loops in learning across tasks, species, and methodologies. In: Groenewegen H., Voorn P., Berendse H., Mulder A., Cools A. (eds) The Basal Ganglia IX. Advances in Behavioral Biology, vol 58. Springer, New York. 2009.

Deschenes M, Veinante P, Zhang ZW. The organization of corticothalamic projections: reciprocity versus parity. Brain Res Reviews. 1998;18:286–308.

Article  Google Scholar 

Schroll H, Hamker FH. Computational models of basal-ganglia pathway functions: focus on functional neuroanatomy. Front Syst Neurosci. 2013.

Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci. 2006;7(6):464–76.

Article  Google Scholar 

Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, Agid Y, DeLong MR, Obeso JA. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci. 2010;11:760–7720.

Article  Google Scholar 

Miller KJ, Shenhav A, Ludvig EA. Habits without values. Psychol Rev. 2019;126:292–311.

Article  Google Scholar 

Daw ND, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci. 2005;8(12):1704–11.

Article  Google Scholar 

Miller K, Ludvig EA, Pezzulo G, Shenhav A. Realigning models of habitual and goal-directed decision-making. In: Morris R, Bornstein A, Shenhav A, editors. Goal-directed decision making. London: Academic. 2018;407–428.

Doll BB, Simon DA, Daw ND. The ubiquity of model-based reinforcement learning. Curr Opin Neurobiol. 2012;12:1075–81.

Article  Google Scholar 

Lopez-Paniagua D, Seger C. Interactions within and between corticostriatal loops during component processes of category learning. J Cogn Neurosci. 2011;23(10):3068–83.

Article  Google Scholar 

Dayan P. Improving generalization for temporal difference learning: the successor representation. Neural Comput. 1993;5:613–24.

Article  Google Scholar 

Momennejad I, Russek EM, Cheong JH, Botvinick MM, Daw ND, Gershman SJ. The successor representation in human reinforcement learning. Nat Hum Behav. 2017;1(9):680–92.

Article  Google Scholar 

Rusu SI, Pennartz CMA. Learning, memory and consolidation mechanisms for behavioral control in hierarchically organized cortico-basal ganglia systems. Hippocampus. 2020;30(1):73–98.

Article  Google Scholar 

Baldassarre G., Caligiore D., Mannella F. The hierarchical organisation of cortical and basal-ganglia systems: a computationally-informed review and integrated hypothesis. In: Baldassarre G., Mirolli M. (eds) Computational and Robotic Models of the Hierarchical Organization of Behavior. Springer, Berlin, Heidelberg. 2013.

Dezfouli A, Balleine BW. Actions, action sequences and habits: evidence that goal-directed and habitual action control are hierarchically organized. PLoS Comput Biol. 2013;9(12).

Yin HH. The basal ganglia and hierarchical control in voluntary behavior. In: Soghomonian JJ, editor. The Basal Ganglia novel perspectives on motor and cognitive functions. Basel, Switzerland: Springer; 2016. p. 513–66.

Chapter  Google Scholar 

Merel J, Botvinick M, Wayne G. Hierarchical motor control in mammals and machines. Nat Commun. 2019;10.

Badre D, Nee DE. Frontal cortex and the hierarchical control of behavior. Trends Cogn Sci. 2018;22(2):170–88.

Article  Google Scholar 

Badre D, D’Esposito M. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cogn Neurosci. 2007;19(12):2082–99.

Article  Google Scholar 

Joel D, Weiner I. The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience. 1994;63(2):363–79.

Article  MathSciNet  Google Scholar 

Draganski B, Kherif F, Klöppel S, Cook PA, Alexander DC, Parker GJ, Frackowiak RS. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci. 2008;28(28):7143–7152.

Averbeck BB, Lehman J, Jacobson M, Haber SN. Estimates of projection overlap and zones of convergence within frontal-striatal circuits. J Neurosci. 2014;34(29):9497–505.

Article  Google Scholar 

Aarts E, van Holstein M, Cools R. Striatal dopamine and the interface between motivation and cognition. Front Psychol. 2011.

Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20(6):2369–82.

Article  Google Scholar 

Ikeda H, Saigusa T, Kamei J, Koshikawa N, Cools AR. Spiraling dopaminergic circuitry from the ventral striatum to dorsal striatum is an effective feed-forward loop. Neuroscience. 2013;241:126–34.

Article  Google Scholar 

Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci. 2011;34:441–66.

Article  Google Scholar 

McFarland NR, Haber SN. Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci. 2000;20:3798–813.

Article  Google Scholar 

Haber SN, Calzavara R. The cortico-basal ganglia integrative network: The role of the thalamus. Brain Res Bull. 2009;68:69–74.

Article  Google Scholar 

McFarland NR, Haber SN. Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci. 2002;22:8117–32.

Article  Google Scholar 

Baladron J, Hamker FH. Habit learning in hierarchical cortex - basal ganglia loops. Eur J Neurosci. 2020;52(12):4613–38.

Article  Google Scholar 

Scholl C, Baladron J, Vitay J, Hamker FH. Enhanced habit formation in Tourette patients explained by shortcut modulation in a hierarchical cortico-basal ganglia model. Brain Struct Funct. 2022.

Shin YK, Proctor RW, Capaldi EJ. A review of contemporary ideomotor theory. Psychol Bull. 2010;136:943–74.

Article  Google Scholar 

Hommel B, Müsseler J, Aschersleben G, Prinz W. The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci. 2001;24:849–937.

Article  Google Scholar 

Elsner B, Hommel B. Effect anticipation and action control. J Exp Psychol Hum Percept Perform. 2001;27:229–40.

Article  Google Scholar 

Schroll H, Vitay J, Hamker FH. Dysfunctional and compensatory synaptic plasticity in Parkinson’s disease. Eur J Neurosci. 2014;39:688–702.

Article  Google Scholar 

Collins AL, Saunders BT. Heterogeneity in striatal dopamine circuits: form and function in dynamic reward seeking. J Neurosci Res. 2020;98:1046–69.

Article  Google Scholar 

Collins AGE, Frank MJ. Cognitive control over learning: creating, clustering, and generalizing task-set structure. Psychol Rev. 2013;2013(120):190–229.

Article  Google Scholar 

Frank MJ. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw. 2006;19:1120–36.

Article  MATH  Google Scholar 

留言 (0)

沒有登入
gif