Fatigue in Postacute Sequelae of COVID-19

COVID-19 Map - Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/map.html. Accessed July 19, 2022.

Phipps S.J. Grafton R.Q. Kompas T.

Robust estimates of the true (population) infection rate for COVID-19: a backcasting approach.

R Soc Open Sci. 7200909https://doi.org/10.1098/RSOS.200909

Estimation of the fraction of COVID-19 infected people in U.S. states and countries worldwide.

PLoS One. 16e0246772https://doi.org/10.1371/JOURNAL.PONE.0246772

CDC COVID Data Tracker: Hospital Admissions. https://covid.cdc.gov/covid-data-tracker/#new-hospital-admissions. Accessed July 19, 2022.

CDC COVID Data Tracker: Daily and Total Trends. https://covid.cdc.gov/covid-data-tracker/#trends_dailydeaths. Accessed July 19, 2022.

Mahajan S. Caraballo C. Li S.X. et al.

SARS-CoV-2 Infection Hospitalization Rate and Infection Fatality Rate Among the Non-Congregate Population in Connecticut.

Am J Med. 134: 812https://doi.org/10.1016/J.AMJMED.2021.01.020

Davis HE, Assaf GS, Mccorkell L, et al. Characterizing Long COVID in an International Cohort: 7 Months of Symptoms and Their Impact. doi:10.1101/2020.12.24.20248802

Baratta J.M. Tompary A. Siano S. Floris-Moore M. Weber D.J.

Postacute Sequelae of COVID-19 Infection and Development of a Physiatry-Led Recovery Clinic.

Am J Phys Med Rehabil. 100: 633https://doi.org/10.1097/PHM.0000000000001778Hernandez-Romieu A.C. Leung S. Mbanya A. et al.

Health Care Utilization and Clinical Characteristics of Nonhospitalized Adults in an Integrated Health Care System 28–180 Days After COVID-19 Diagnosis — Georgia, May 2020–March 2021.

MMWR Morb Mortal Wkly Rep. 70: 644-650https://doi.org/10.15585/MMWR.MM7017E3

Huang Y, Pinto MD, Borelli JL, et al. COVID Symptoms, Symptom Clusters, and Predictors for Becoming a Long-Hauler: Looking for Clarity in the Haze of the Pandemic. medRxiv. March 2021. doi:10.1101/2021.03.03.21252086

Nasserie T. Hittle M. Goodman S.N.

Assessment of the Frequency and Variety of Persistent Symptoms Among Patients With COVID-19: A Systematic Review.

JAMA Netw open. 4https://doi.org/10.1001/JAMANETWORKOPEN.2021.11417Carfì A. Bernabei R. Landi F.

Persistent Symptoms in Patients After Acute COVID-19.

JAMA. 324: 603-605https://doi.org/10.1001/JAMA.2020.12603

Rosenthal TC, Pretorius R, Malik K. Fatigue: An Overview. 2008. http://familydoctor.org/online/famdocen/home/common/pain/disorders/031.html. Accessed July 20, 2022.

Stussman B. Williams A. Snow J. et al.

Characterization of Post–exertional Malaise in Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.

Front Neurol. 11: 1025https://doi.org/10.3389/FNEUR.2020.01025/BIBTEXSandler C.X. Wyller V.B.B. Moss-Morris R. et al.

Long COVID and Post-infective Fatigue Syndrome: A Review.

Open Forum Infect Dis. 8https://doi.org/10.1093/OFID/OFAB440

Yancey JR, Thomas SM, Air Force Base F. Chronic Fatigue Syndrome: Diagnosis and Treatment. 2012;86(8). www.aafp.org/afp. Accessed July 20, 2022.

Discerning Primary and Secondary Factors Responsible for Clinical Fatigue in Multisystem Diseases.

Biology (Basel). 3: 606https://doi.org/10.3390/BIOLOGY3030606Reynolds K.J. Vernon S.D. Bouchery E. Reeves W.C.

The economic impact of chronic fatigue syndrome.

Cost Eff Resour Alloc. 2https://doi.org/10.1186/1478-7547-2-4

Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness.

Mil Med. 180: 721-723https://doi.org/10.7205/MILMED-D-15-00085Herrera J.E. Niehaus W.N. Whiteson J. et al.

Multidisciplinary collaborative consensus guidance statement on the assessment and treatment of fatigue in postacute sequelae of SARS-CoV-2 infection (PASC) patients.

PM&R. 13: 1027-1043https://doi.org/10.1002/PMRJ.12684Munblit D. O’Hara M.E. Akrami A. Perego E. Olliaro P. Needham D.M.

Long COVID: aiming for a consensus.

Lancet Respir Med. 10: 632-634https://doi.org/10.1016/S2213-2600(22)00135-7

A Paradigm for Post-Covid-19 Fatigue Syndrome Analogous to ME/CFS.

Front Neurol. 12https://doi.org/10.3389/FNEUR.2021.701419De Bellis A. Bellastella G. Pernice V. et al.

Hypothalamic-Pituitary Autoimmunity and Related Impairment of Hormone Secretions in Chronic Fatigue Syndrome.

J Clin Endocrinol Metab. 106: e5147-e5155https://doi.org/10.1210/CLINEM/DGAB429Gonen M.S. De Bellis A. Durcan E. et al.

Assessment of Neuroendocrine Changes and Hypothalamo-Pituitary Autoimmunity in Patients with COVID-19.

Horm Metab Res. 54: 153-161https://doi.org/10.1055/A-1764-1260/ID/R2021-11-0326-0034Kanczkowski W. Gaba W.H. Krone N. et al.

Adrenal Gland Function and Dysfunction during COVID-19.

Horm Metab Res. 54: 532-539https://doi.org/10.1055/A-1873-2150/ID/R2022-03-0084-0029Santana M.F. Borba M.G.S. Baía-Da-Silva D.C. et al.

Case Report: Adrenal Pathology Findings in Severe COVID-19: An Autopsy Study.

Am J Trop Med Hyg. 103: 1604https://doi.org/10.4269/AJTMH.20-0787Iuga A.C. Marboe C.C. Yilmaz M.M. Lefkowitch J.H. Gauran C. Lagana S.M.

Adrenal Vascular Changes in COVID-19 Autopsies.

Arch Pathol Lab Med. 144: 1159-1160https://doi.org/10.5858/ARPA.2020-0248-LEFan B.E. Wong S.W. Sum C.L.L. et al.

Hypercoagulability, endotheliopathy, and inflammation approximating 1 year after recovery: Assessing the long-term outcomes in COVID-19 patients.

Am J Hematol. 97: 915-923https://doi.org/10.1002/AJH.26575

The cytokine storm and COVID-19.

J Med Virol. 93: 250-256https://doi.org/10.1002/JMV.26232

Wang J, Yang X, Li Y, Huang J an, Jiang J, Su N. Specific cytokines in the inflammatory cytokine storm of patients with COVID-19-associated acute respiratory distress syndrome and extrapulmonary multiple-organ dysfunction. Virol J. 2021;18(1):1-12. doi:10.1186/S12985-021-01588-Y/FIGURES/4

Garcia M.N. Hause A.M. Walker C.M. Orange J.S. Hasbun R. Murray K.O.

Evaluation of prolonged fatigue post-West Nile virus infection and association of fatigue with elevated antiviral and proinflammatory cytokines.

Viral Immunol. 27: 327-333https://doi.org/10.1089/VIM.2014.0035Broderick G. Fuite J. Kreitz A. Vernon S.D. Klimas N. Fletcher M.A.

A formal analysis of cytokine networks in chronic fatigue syndrome.

Brain Behav Immun. 24: 1209-1217https://doi.org/10.1016/J.BBI.2010.04.012Evans R.A. Leavy O.C. Richardson M. et al.

Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: a prospective observational study.

Lancet Respir Med. 10: 761-775https://doi.org/10.1016/S2213-2600(22)00127-8Sollini M. Morbelli S. Ciccarelli M. et al.

Long COVID hallmarks on [18F]FDG-PET/CT: a case-control study.

Eur J Nucl Med Mol Imaging. 48: 3187-3197https://doi.org/10.1007/S00259-021-05294-3/FIGURES/4

Jarrott B, Head R, Pringle KG, Lumbers ER, Martin JH. “LONG COVID”—A hypothesis for understanding the biological basis and pharmacological treatment strategy. Pharmacol Res Perspect. 2022;10(1):e00911. doi:10.1002/PRP2.911

Castanares-Zapatero D. Chalon P. Kohn L. et al.

Pathophysiology and mechanism of long COVID: a comprehensive review.

Ann Med. 54: 1473https://doi.org/10.1080/07853890.2022.2076901Puntmann V.O. Carerj M.L. Wieters I. et al.

Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19).

JAMA Cardiol. 5: 1265-1273https://doi.org/10.1001/JAMACARDIO.2020.3557Małek Ł.A. Marczak M. Miłosz-Wieczorek B. et al.

Cardiac involvement in consecutive elite athletes recovered from Covid‐19: A magnetic resonance study.

J Magn Reson Imaging. 53: 1723https://doi.org/10.1002/JMRI.27513Daniels C.J. Rajpal S. Greenshields J.T. et al.

Prevalence of Clinical and Subclinical Myocarditis in Competitive Athletes With Recent SARS-CoV-2 Infection: Results From the Big Ten COVID-19 Cardiac Registry.

JAMA Cardiol. 6: 1078-1087https://doi.org/10.1001/JAMACARDIO.2021.2065Agergaard J. Leth S. Pedersen T.H. et al.

Myopathic changes in patients with long-term fatigue after COVID-19.

Clin Neurophysiol. 132: 1974-1981https://doi.org/10.1016/j.clinph.2021.04.009Suh J. Mukerji S.S. Collens S.I. et al.

Skeletal Muscle and Peripheral Nerve Histopathology in COVID-19.

Neurology. 97: e849-e858https://doi.org/10.1212/WNL.0000000000012344Duarte-Neto A.N. Monteiro R.A.A. da Silva L.F.F. et al.

Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy.

Histopathology. 77: 186-197https://doi.org/10.1111/HIS.14160Manzano G.S. Woods J.K. Amato A.A.

Covid-19-Associated Myopathy Caused by Type I Interferonopathy.

N Engl J Med. 383: 2389-2390https://doi.org/10.1056/NEJMC2031085Tankisi H. Tankisi A. Harbo T. Markvardsen L.K. Andersen H. Pedersen T.H.

Critical illness myopathy as a consequence of Covid-19 infection.

Clin Neurophysiol. 131: 1931https://doi.org/10.1016/J.CLINPH.2020.06.003

Stengel A, Malek N, Zipfel S, Goepel S. Long Haulers—What Is the Evidence for Post-COVID Fatigue? Front Psychiatry. 2021;12:657. doi:10.3389/FPSYT.2021.677934/XML/NLM

COVID-19 associated myopathy.

Curr Opin Neurol. 35https://doi.org/10.1097/WCO.0000000000001101Soares M.N. Eggelbusch M. Naddaf E. et al.

Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19.

J Cachexia Sarcopenia Muscle. 13: 11-22https://doi.org/10.1002/JCSM.12896Ahmed D.S. Isnard S. Berini C. Lin J. Routy J.P. Royston L.

Coping With Stress: The Mitokine GDF-15 as a Biomarker of COVID-19 Severity.

Front Immunol. 13https://doi.org/10.3389/FIMMU.2022.820350

Psychiatric symptoms and cognitive impairment in “Long COVID”: the relevance of immunopsychiatry.

World Psychiatry. 20: 357https://doi.org/10.1002/WPS.20913Renaud-Charest O. Lui L.M.W. Eskander S. et al.

Onset and frequency of depression in post-COVID-19 syndrome: A systematic review.

J Psychiatr Res. 144: 129-137https://doi.org/10.1016/J.JPSYCHIRES.2021.09.054Ortelli P. Ferrazzoli D. Sebastianelli L. et al.

Neuropsychological and neurophysiological correlates of fatigue in post-acute patients with neurological manifestations of COVID-19: Insights into a challenging symptom.

J Neurol Sci. 420117271https://doi.org/10.1016/J.JNS.2020.117271

Mandal S, Barnett J, Brill S, Brown J, Thorax ED-, 2021 undefined. “Long-COVID”: a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. thorax.bmj.com. https://thorax.bmj.com/content/76/4/396.abstract. Accessed September 12, 2022.

Jahrami H. BaHammam A.S. Bragazzi N.L. Saif Z. Faris M. Vitiello M.V.

Sleep problems during the COVID-19 pandemic by population: A systematic review and meta-analysis.

J Clin Sleep Med. 17: 299-313https://doi.org/10.5664/JCSM.8930/SUPPL_FILE/JCSM.8930.DS001.PDFBecker S.P. Dvorsky M.R. Breaux R. Cusick C.N. Taylor K.P. Langberg J.M.

Prospective examination of adolescent sleep patterns and behaviors before and during COVID-19.

Sleep. 44https://doi.org/10.1093/SLEEP/ZSAB054

Pataka A, Kotoulas S, Sakka E, Katsaounou P, Pappa S. Sleep Dysfunction in COVID-19 Patients: Prevalence, Risk Factors, Mechanisms, and Management. J Pers Med 2021, Vol 11, Page 1203. 2021;11(11):1203. doi:10.3390/JPM11111203

Fernández-De-Las-Peñas C. Martín-Guerrero J.D. Cancela-Cilleruelo I. Moro-López-Menchero P. Rodríguez-Jiménez J. Pellicer-Valero O.J.

Trajectory curves of post-COVID anxiety/depressive symptoms and sleep quality in previously hospitalized COVID-19 survivors: the LONG-COVID-EXP-CM multicenter study.

Psychol Med. : 1-2https://doi.org/10.1017/S003329172200006XLupo G.F.D. Rocchetti G. Lucini L. et al.

Potential role of microbiome in Chronic Fatigue Syndrome/Myalgic Encephalomyelits (CFS/ME).

Sci Rep. 11https://doi.org/10.1038/S41598-021-86425-6Yeoh Y.K. Zuo T. Lui G.C.Y. et al.

Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19.

Gut. 70: 698-706https://doi.org/10.1136/GUTJNL-2020-323020Liu Q. Mak J.W.Y. Su Q. et al.

Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome.

Gut. 71: 544-552https://doi.org/10.1136/GUTJNL-2021-325989Halpin S.J. McIvor C. Whyatt G. et al.

Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation.

J Med Virol. 93: 1013-1022https://doi.org/10.1002/JMV.26368Mazza M.G. De Lorenzo R. Conte C. et al.

Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors.

Brain Behav Immun. 89: 594-600https://doi.org/10.1016/J.BBI.2020.07.037Taquet M. Luciano S. Geddes J.R. Harrison P.J.

Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA.

The lancet Psychiatry. 8: 130-140https://doi.org/10.1016/S2215-0366(20)30462-4

The measurement of fatigue in chronic illness: a systematic review of unidimensional and multidimensional fatigue measures.

J Pain Symptom Manage. 37: 107-128https://doi.org/10.1016/J.JPAINSYMMAN.2007.08.019

National Institute for Health and Care Excellence (NICE). Clinical guideline: Chronic fatigue syndrome/myalgic encephalomyelitis (or encephalopathy): diagnosis and management; published. www.nice.org.uk/guidance/cg53. Published 2007.

Perceived Exertion (Borg Rating of Perceived Exertion Scale) | Physical Activity | CDC. https://www.cdc.gov/physicalactivity/basics/measuring/exertion.htm. Accessed April 3, 2023.

Homerton University Hospital: NHS Foundation Trust. Post COVID-19 Patient information pack: Helping you to recover and manage your symptoms following COVID-19. https://www.hackneycitizen.co.uk/wp-content/uploads/Post-COVID-19-%0Ainformation-pack-5.pdf.

Haß U, Herpich C, Norman K. Anti-Inflammatory Diets and Fatigue. Nutrients. 2019;11(10). doi:10.3390/NU11102315

留言 (0)

沒有登入
gif