TargIDe: a machine-learning workflow for target identification of molecules with antibiofilm activity against Pseudomonas aeruginosa

Worthington RJ, Richards JJ, Melander C (2012) Small molecule control of bacterial biofilms. Org Biomol Chem 10:7457–7474. https://doi.org/10.1039/c2ob25835h

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. https://doi.org/10.1038/nrmicro821

Article  CAS  PubMed  Google Scholar 

Donlan Rodney M (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890. https://doi.org/10.3201/eid0809.020063

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh PK, Schaefer AL, Parsek MR et al (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764. https://doi.org/10.1038/35037627

Article  CAS  PubMed  Google Scholar 

Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122. https://doi.org/10.1038/nrd1008

Article  CAS  PubMed  Google Scholar 

Chung PY, Toh YS (2014) Anti-biofilm agents: recent breakthrough against multi-drug resistant Staphylococcus aureus. Pathog Dis 70:231–239. https://doi.org/10.1111/2049-632X.12141

Article  CAS  PubMed  Google Scholar 

Sheikh AH, Raghuram B, Eschen-lippold L, Scheel D (2017) Pseudomonas aeruginosa biofilms—host response and clinical implications in lung infections. v:1–36. https://doi.org/10.2174/138161211796197016

Article  Google Scholar 

Sharma G, Sharma S, Sharma P et al (2016) Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 121:309–319. https://doi.org/10.1111/jam.13078

Article  CAS  PubMed  Google Scholar 

Mehta DK, Das R (2018) Microbial biofilm and quorum sensing inhibition: endowment of medicinal plants to combat multidrug- resistant bacteria. Curr Drug Targets. https://doi.org/10.2174/1389450119666180406111143

Article  PubMed  Google Scholar 

Subhadra B, Kim DH, Woo K et al (2018) Control of biofilm formation in healthcare: recent advances exploiting quorum-sensing interference strategies and multidrug efflux pump inhibitors. Materials. https://doi.org/10.3390/ma11091676

Article  PubMed  PubMed Central  Google Scholar 

Koo H, Allan RN, Howlin RP et al (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Publishing Group. https://doi.org/10.1038/nrmicro.2017.99

Article  Google Scholar 

Skariyachan S, Sridhar VS, Packirisamy S et al (2018) Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiol (Praha) 63:413–432. https://doi.org/10.1007/s12223-018-0585-4

Article  CAS  PubMed  Google Scholar 

Garcia-Clemente M, de la Rosa D, Máiz L et al (2020) Impact of pseudomonas aeruginosa infection on patients with chronic inflammatory airway diseases.J Clin Med 9

Majumdar M, Dubey A, Goswami R et al (2020) In vitro and in silico studies on the structural and biochemical insight of anti-biofilm activity of andrograpanin from Andrographis paniculata against Pseudomonas aeruginosa. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-020-02919-x

Article  PubMed  Google Scholar 

Pawar V, Komor U, Kasnitz N et al (2015) In vivo efficacy of antimicrobials against biofilm-producing Pseudomonas aeruginosa. Antimicrob Agents Chemother 59. https://doi.org/10.1128/AAC.00194-15

Bao L, Guo J, Feng L et al (2019) Efficacy of artesunate against Pseudomonas aeruginosa Biofilm mediated by Iron. Biomed Res Int 2019. https://doi.org/10.1155/2019/4810217

Article  Google Scholar 

Hentzer M, Riedel K, Rasmussen TB et al (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology (NY). https://doi.org/10.1099/00221287-148-1-87

Article  Google Scholar 

Gökalsın B, Aksoydan B, Erman B, Sesal NC (2017) Reducing virulence and biofilm of Pseudomonas aeruginosa by potential quorum sensing inhibitor carotenoid: Zeaxanthin. Microb Ecol. https://doi.org/10.1007/s00248-017-0949-3

Article  PubMed  Google Scholar 

Annapoorani A, Umamageswaran V, Parameswari R et al (2012) Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-012-9599-1

Article  PubMed  Google Scholar 

Kim HS, Lee SH, Byun Y, Park HD (2015) 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep. https://doi.org/10.1038/srep08656

Article  PubMed  PubMed Central  Google Scholar 

Magalhães RP, Vieira TF, Fernandes HS et al (2020) The biofilms structural database. Trends Biotechnol 38

Vieira TF, Magalhães RP, Simões M, Sousa SF (2022) Drug repurposing targeting Pseudomonas aeruginosa MvfR using docking, virtual screening, molecular dynamics, and free-energy calculations. Antibiotics. https://doi.org/10.3390/antibiotics11020185

Article  PubMed  PubMed Central  Google Scholar 

Passos da Silva D, Matwichuk ML, Townsend DO et al (2019) The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide PSL and stabilizes the biofilm matrix. Nat Commun. https://doi.org/10.1038/s41467-019-10201-4

Article  PubMed  PubMed Central  Google Scholar 

Mangwani N, Kumari S, Das S (2017) Bacterial biofilms and quorum sensing: fidelity in bioremediation technology. Biotechnol Genet Eng Rev. https://doi.org/10.1080/02648725.2016.1196554

Article  Google Scholar 

Mozsik G, Szabo L, Czimmer IJ (2011) Approaches to gastrointestinal cytoprotection: from isolated cells, via animal experiments to healthy human subjects and patients with different gastrointestinal disorders. Curr Pharm Des. https://doi.org/10.2174/138161211796197016

Article  PubMed  Google Scholar 

Vakulskas CA, Brady KM, Yahr TL (2009) Mechanism of transcriptional activation by Pseudomonas aeruginosa ExsA. J Bacteriol. https://doi.org/10.1128/JB.00902-09

Article  PubMed  PubMed Central  Google Scholar 

Vamathevan J, Clark D, Czodrowski P et al (2019) Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 18:463–477

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeon J, Nim S, Teyra J et al (2014) A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Med. https://doi.org/10.1186/s13073-014-0057-7

Article  PubMed  PubMed Central  Google Scholar 

Ferrero E, Dunham I, Sanseau P (2017) In silico prediction of novel therapeutic targets using gene-disease association data. J Transl Med. https://doi.org/10.1186/s12967-017-1285-6

Article  PubMed  PubMed Central  Google Scholar 

Mamoshina P, Volosnikova M, Ozerov IV et al (2018) Machine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identification. Front Genet. https://doi.org/10.3389/fgene.2018.00242

Article  PubMed  PubMed Central  Google Scholar 

Crampon K, Giorkallos A, Deldossi M et al (2022) Machine-learning methods for ligand–protein molecular docking. Drug Discov Today 27

Gentile F, Agrawal V, Hsing M et al (2020) Deep docking: a deep learning platform for augmentation of structure based drug discovery. ACS Cent Sci. https://doi.org/10.1021/acscentsci.0c00229

Article  PubMed  PubMed Central  Google Scholar 

McNutt AT, Francoeur P, Aggarwal R et al (2021) GNINA 1.0: molecular docking with deep learning. J Cheminform. https://doi.org/10.1186/s13321-021-00522-2

Article  PubMed  PubMed Central  Google Scholar 

Choudhary MN, Connolly J (2021) Artificial intelligence in medicine discovery: AI in virtual screening. In: 2021 32nd Irish signals and systems conference, ISSC 2021

Zhu J, Wu Y, Wang M et al (2020) Integrating machine learning-based virtual screening with multiple protein structures and bio-assay evaluation for discovery of novel GSK3β inhibitors. Front Pharmacol. https://doi.org/10.3389/fphar.2020.566058

Article  PubMed  PubMed Central  Google Scholar 

Gupta A, Zhou HX (2021) Machine learning-enabled pipeline for large-scale virtual drug screening. J Chem Inf Model 61

Baskin II (2021) Practical constraints with machine learning in drug discovery. Expert Opin Drug Discov 1–3

Jin W, Stokes JM, Eastman RT et al (2021) Deep learning identifies synergistic drug combinations for treating COVID-19. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2105070118

Article  PubMed  PubMed Central  Google Scholar 

Gerdes H, Casado P, Dokal A et al (2021) Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nat Commun. https://doi.org/10.1038/s41467-021-22170-8

Article  PubMed  PubMed Central  Google Scholar 

Ma Y, Guo Z, Xia B et al (2022) Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat Biotechnol. https://doi.org/10.1038/s41587-022-01226-0

Article  PubMed  PubMed Central  Google Scholar 

Martins FG, Melo A, Sousa SF (2021) Databases for the study of biofilms: current status and potential applications. Biofouling. https://doi.org/10.1080/08927014.2021.1876849

Article  PubMed  Google Scholar 

Wang Y, Mei C, Zhou Y et al (2019) Semi-supervised prediction of protein interaction sites from unlabeled sample information. BMC Bioinformatics. https://doi.org/10.1186/s12859-019-3274-7

Article  PubMed  PubMed Central  Google Scholar 

Dara S, Dhamercherla S, Jadav SS et al (2022) Machine learning in drug discovery: a review. Artif Intell Rev. https://doi.org/10.1007/s10462-021-10058-4

Article  PubMed  Google Scholar 

Patel L, Shukla T, Huang X et al (2020) Machine learning methods in drug discovery. Molecules. https://doi.org/10.3390/MOLECULES25225277

Article 

留言 (0)

沒有登入
gif