Gut–liver axis: barriers and functional circuits

Hornef, M. W. & Torow, N. ‘Layered immunity’ and the ‘neonatal window of opportunity’ – timed succession of non-redundant phases to establish mucosal host–microbial homeostasis after birth. Immunology 159, 15–25 (2020).

Article  CAS  PubMed  Google Scholar 

Volta, U. et al. IgA antibodies to dietary antigens in liver cirrhosis. Ric. Clin. Lab. 17, 235–242 (1987).

Article  CAS  PubMed  Google Scholar 

Tripathi, A. et al. The gut–liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15, 397–411 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trebicka, J., Bork, P., Krag, A. & Arumugam, M. Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver failure. Nat. Rev. Gastroenterol. Hepatol. 18, 167–180 (2021).

Article  PubMed  Google Scholar 

Buckley, A. & Turner, J. R. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb. Perspect. Biol. 10, a029314 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Volynets, V. et al. Assessment of the intestinal barrier with five different permeability tests in healthy C57BL/6J and BALB/cJ mice. Dig. Dis. Sci. 61, 737–746 (2016).

Article  CAS  PubMed  Google Scholar 

Mowat, A. M., Scott, C. L. & Bain, C. C. Barrier-tissue macrophages: functional adaptation to environmental challenges. Nat. Med. 23, 1258–1270 (2017).

Article  CAS  PubMed  Google Scholar 

Frazer, L. C. & Good, M. Intestinal epithelium in early life. Mucosal Immunol. 15, 1181–1187 (2022).

Article  CAS  PubMed  Google Scholar 

Muncan, V. et al. Blimp1 regulates the transition of neonatal to adult intestinal epithelium. Nat. Commun. 2, 452 (2011).

Article  PubMed  Google Scholar 

Westrom, B., Arevalo Sureda, E., Pierzynowska, K., Pierzynowski, S. G. & Perez-Cano, F. J. The immature gut barrier and its importance in establishing immunity in newborn mammals. Front. Immunol. 11, 1153 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Clarke, R. M. & Hardy, R. N. An analysis of the mechanism of cessation of uptake of macromolecular substances by the intestine of the young rat (‘closure’). J. Physiol. 204, 127–134 (1969).

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, W. et al. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 455, 542–546 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, W. et al. Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature 577, 543–548 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanidad, K. Z. et al. Maternal gut microbiome-induced IgG regulates neonatal gut microbiome and immunity. Sci. Immunol. 7, eabh3816 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arevalo Sureda, E., Westrom, B., Pierzynowski, S. G. & Prykhodko, O. Maturation of the intestinal epithelial barrier in neonatal rats coincides with decreased FcRn expression, replacement of vacuolated enterocytes and changed Blimp-1 expression. PLoS ONE 11, e0164775 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

Article  PubMed  Google Scholar 

Park, J. et al. Lysosome-rich enterocytes mediate protein absorption in the vertebrate gut. Dev. Cell 51, 7–20.e6 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Remis, N. N. et al. Mucolipin co-deficiency causes accelerated endolysosomal vacuolation of enterocytes and failure-to-thrive from birth to weaning. PLoS Genet. 10, e1004833 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Kolyva, S., Triga, M., Kritikou, D. & Chrysis, D. The effect of feeding patterns on serum zonulin levels in infants at 3-4 months of age. Eur. J. Pediatr. 180, 3273–3278 (2021).

Article  CAS  PubMed  Google Scholar 

Renz, H., Brandtzaeg, P. & Hornef, M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat. Rev. Immunol. 12, 9–23 (2011).

Article  PubMed  Google Scholar 

Nakamura, Y., Kimura, S. & Hase, K. M cell-dependent antigen uptake on follicle-associated epithelium for mucosal immune surveillance. Inflamm. Regen. 38, 15 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Gustafsson, J. K. et al. Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis. Elife 10, e67292 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jinnohara, T. et al. IL-22BP dictates characteristics of Peyer’s patch follicle-associated epithelium for antigen uptake. J. Exp. Med. 214, 1607–1618 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Constant, D. A., Nice, T. J. & Rauch, I. Innate immune sensing by epithelial barriers. Curr. Opin. Immunol. 73, 1–8 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birchenough, G. M., Johansson, M. E., Gustafsson, J. K., Bergstrom, J. H. & Hansson, G. C. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 8, 712–719 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sellin, M. E. et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16, 237–248 (2014).

Article  CAS  PubMed  Google Scholar 

Fulde, M. et al. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature 560, 489–493 (2018).

Article  CAS  PubMed  Google Scholar 

Al Nabhani, Z. et al. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity 50, 1276–1288.e5 (2019).

Article  CAS  PubMed  Google Scholar 

Scharschmidt, T. C. et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boothby, I. C. et al. Early-life inflammation primes a T helper 2 cell-fibroblast niche in skin. Nature 599, 667–672 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).

Article  CAS  PubMed  Google Scholar 

Li, M. et al. A wave of Foxp3(+) regulatory T cell accumulation in the neonatal liver plays unique roles in maintaining self-tolerance. Cell Mol. Immunol. 17, 507–518 (2020).

Article  PubMed  Google Scholar 

Maria, A., English, K. A. & Gorham, J. D. Appropriate development of the liver Treg compartment is modulated by the microbiota and requires TGF-β and MyD88. J. Immunol. Res. 2014, 279736 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Tilg, H., Adolph, T. E. & Trauner, M. Gut–liver axis: pathophysiological concepts and clinical implications. Cell Metab. 34, 1700–1718 (2022).

Article  CAS  PubMed  Google Scholar 

Luciani, C., Hager, F. T., Cerovic, V. & Lelouard, H. Dendritic cell functions in the inductive and effector sites of intestinal immunity. Mucosal Immunol. 15, 40–50 (2022).

留言 (0)

沒有登入
gif