Structure of a SIN3–HDAC complex from budding yeast

Vidal, M. & Gaber, R. F. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 6317–6327 (1991).

CAS  PubMed  PubMed Central  Google Scholar 

Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

Article  CAS  PubMed  Google Scholar 

Verdin, E. & Ott, M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258–264 (2015).

Article  CAS  PubMed  Google Scholar 

Micelli, C. & Rastelli, G. Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discov. Today 20, 718–735 (2015).

Article  CAS  PubMed  Google Scholar 

Yang, X. J. & Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9, 206–218 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moser, M. A., Hagelkruys, A. & Seiser, C. Transcription and beyond: the role of mammalian class I lysine deacetylases. Chromosoma 123, 67–78 (2014).

Article  CAS  PubMed  Google Scholar 

Millard, C. J., Watson, P. J., Fairall, L. & Schwabe, J. W. R. Targeting class I histone deacetylases in a “complex” environment. Trends Pharmacol. Sci. 38, 363–377 (2017).

Article  CAS  PubMed  Google Scholar 

Wang, Z. A. et al. Diverse nucleosome site-selectivity among histone deacetylase complexes. eLife 9, e57663 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laugesen, A. & Helin, K. Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell 14, 735–751 (2014).

Article  CAS  PubMed  Google Scholar 

Adams, G. E., Chandru, A. & Cowley, S. M. Co-repressor, co-activator and general transcription factor: the many faces of the Sin3 histone deacetylase (HDAC) complex. Biochem. J. 475, 3921–3932 (2018).

Article  CAS  PubMed  Google Scholar 

Nascimento, E. M. et al. The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis. Nat. Cell Biol. 13, 1395–1405 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kwon, Y. J. et al. Selective inhibition of SIN3 corepressor with avermectins as a novel therapeutic strategy in triple-negative breast cancer. Mol. Cancer Ther. 14, 1824–1836 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rielland, M. et al. Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression. J. Clin. Invest. 124, 2125–2135 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 (2014).

Article  CAS  PubMed  Google Scholar 

Adams, M. K. et al. Differential complex formation via paralogs in the human Sin3 protein interaction network. Mol. Cell Proteomics 19, 1468–1484 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Witteveen, J. S. et al. Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity. Nat. Genet. 48, 877–887 (2016).

Article  CAS  PubMed  Google Scholar 

Latypova, X. et al. Haploinsufficiency of the Sin3/HDAC corepressor complex member SIN3B causes a syndromic intellectual disability/autism spectrum disorder. Am. J. Hum. Genet 108, 929–941 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kasten, M. M., Dorland, S. & Stillman, D. J. A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol. Cell. Biol. 17, 4852–4858 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keogh, M. C. et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123, 593–605 (2005).

Article  CAS  PubMed  Google Scholar 

Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

Article  CAS  PubMed  Google Scholar 

van Oevelen, C. et al. A role for mammalian Sin3 in permanent gene silencing. Mol. Cell 32, 359–370 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Kadosh, D. & Struhl, K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89, 365–371 (1997).

Article  CAS  PubMed  Google Scholar 

Bing Li et al. Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316, 1050–1054 (2007).

Article  PubMed  Google Scholar 

Silverstein, R. A. & Ekwall, K. Sin3: a flexible regulator of global gene expression and genome stability. Curr. Genet. 47, 1–17 (2005).

Article  CAS  PubMed  Google Scholar 

Lechner, T. et al. Sds3 (suppressor of defective silencing 3) is an integral component of the yeast Sin3·Rpd3 histone deacetylase complex and is required for histone deacetylase activity. J. Biol. Chem. 275, 40961–40966 (2000).

Article  CAS  PubMed  Google Scholar 

Lamping, E., Lückl, J., Paltauf, F., Henry, S. A. & Kohlwein, S. D. Isolation and characterization of a mutant of Saccharomyces cerevisiae with pleiotropic deficiencies in transcriptional activation and repression. Genetics 137, 55–65 (1994).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colina, A. R. & Young, D. Raf60, a novel component of the Rpd3 histone deacetylase complex required for Rpd3 activity in Saccharomyces cerevisiae. J. Biol. Chem. 280, 42552–42556 (2005).

Article  CAS  PubMed  Google Scholar 

Loewith, R. et al. Pho23 is associated with the Rpd3 histone deacetylase and is required for its normal function in regulation of gene expression and silencing in Saccharomyces cerevisiae. J. Biol. Chem. 276, 24068–24074 (2001).

Article  CAS  PubMed  Google Scholar 

Xie, T. et al. Structure of the 30-kDa Sin3-associated protein (SAP30) in complex with the mammalian Sin3A corepressor and its role in nucleic acid binding. J. Biol. Chem. 286, 27814–27824 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clark, M. D. et al. Structural insights into the assembly of the histone deacetylase-associated Sin3L/Rpd3L corepressor complex. Proc. Natl Acad. Sci. USA 112, E3669–E3678 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brubaker, K. et al. Solution structure of the interacting domains of the Mad-Sin3 complex: implications for recruitment of a chromatin-modifying complex. Cell 103, 655–665 (2000).

Article  CAS  PubMed  Google Scholar 

Nomura, M., Uda-Tochio, H., Murai, K., Mori, N. & Nishimura, Y. The neural repressor NRSF/REST binds the PAH1 domain of the Sin3 corepressor by using its distinct short hydrophobic helix. J. Mol. Biol. 354, 903–915 (2005).

Article  CAS  PubMed  Google Scholar 

Pena, P. V. et al. Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. J. Mol. Biol. 380, 303–312 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Narumi-Kishimoto, Y. et al. Novel SIN3A mutation identified in a Japanese patient with Witteveen-Kolk syndrome. Eur. J. Med. Genet. 62, 103547 (2019).

Article  PubMed  Google Scholar 

Bansal, N., David, G., Farias, E. & Waxman, S. Emerging roles of epigenetic regulator Sin3 in cancer. Adv. Cancer Res. 130, 113–135 (2016).

Article  CAS 

留言 (0)

沒有登入
gif