The RNA m6A landscape of mouse oocytes and preimplantation embryos

Zhao, B. S., Roundtree, I. A. & He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18, 31–42 (2017).

Article  CAS  PubMed  Google Scholar 

Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

Article  CAS  PubMed  Google Scholar 

Klungland, A., Dahl, J. A., Greggains, G., Fedorcsak, P. & Filipczyk, A. Reversible RNA modifications in meiosis and pluripotency. Nat. Methods 14, 18–22 (2016).

Article  PubMed  Google Scholar 

Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

Article  CAS  PubMed  Google Scholar 

Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Atlasi, Y. & Stunnenberg, H. G. The interplay of epigenetic marks during stem cell differentiation and development. Nat. Rev. Genet. 18, 643–658 (2017).

Article  CAS  PubMed  Google Scholar 

Dahl, J. A. et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548–552 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sui, X. et al. METTL3-mediated m6A is required for murine oocyte maturation and maternal-to-zygotic transition. Cell Cycle 19, 391–404 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falco, G. et al. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev. Biol. 307, 539–550 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marikawa, Y. & Alarcon, V. B. Establishment of trophectoderm and inner cell mass lineages in the mouse embryo. Mol. Reprod. Dev. 76, 1019–1032 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Batista, P. J. et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15, 707–719 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16, 191–198 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geula, S. et al. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347, 1002–1006 (2015).

Article  CAS  PubMed  Google Scholar 

Jin, K. X. et al. N6-methyladenosine (m6A) depletion regulates pluripotency exit by activating signaling pathways in embryonic stem cells. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2105192118 (2021).

Oron, E. & Ivanova, N. Cell fate regulation in early mammalian development. Phys. Biol. 9, 045002 (2012).

Article  PubMed  Google Scholar 

Ivanova, I. et al. The RNA m6A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol. Cell 67, 1059–1067 e1054 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, M. et al. Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol. 19, 69 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Lasman, L. et al. Context-dependent functional compensation between Ythdf m6A reader proteins. Genes Dev. 34, 1373–1391 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sha, Q. Q. et al. Characterization of zygotic genome activation-dependent maternal mRNA clearance in mouse. Nucleic Acids Res. 48, 879–894 (2020).

Article  CAS  PubMed  Google Scholar 

Mu, H. et al. METTL3-mediated mRNA N6-methyladenosine is required for oocyte and follicle development in mice. Cell Death Dis. 12, 989 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, T. et al. m6A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 16, 289–301 (2015).

Article  CAS  PubMed  Google Scholar 

Yang, Q. et al. Highly sensitive sequencing reveals dynamic modifications and activities of small RNAs in mouse oocytes and early embryos. Sci. Adv. 2, e1501482 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Deniz, O., Frost, J. M. & Branco, M. R. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 20, 417–431 (2019).

Article  CAS  PubMed  Google Scholar 

Franke, V. et al. Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. Genome Res. 27, 1384–1394 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, C. et al. Nuclear m6A reader YTHDC1 regulates the scaffold function of LINE1 RNA in mouse ESCs and early embryos. Protein Cell 12, 455–474 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, J. et al. The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature 591, 322–326 (2021).

Article  CAS  PubMed  Google Scholar 

Chelmicki, T. et al. m6A RNA methylation regulates the fate of endogenous retroviruses. Nature 591, 312–316 (2021).

Article  CAS  PubMed  Google Scholar 

Xu, W. et al. METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature 591, 317–321 (2021).

Article  CAS  PubMed  Google Scholar 

Xiong, F. et al. RNA m6A modification orchestrates a LINE-1–host interaction that facilitates retrotransposition and contributes to long gene vulnerability. Cell Res. 31, 861–885 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lanciano, S. & Cristofari, G. Measuring and interpreting transposable element expression. Nat. Rev. Genet. 21, 721–736 (2020).

Article  CAS  PubMed  Google Scholar 

Svoboda, P. Why mouse oocytes and early embryos ignore miRNAs? RNA Biol. 7, 559–563 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeVeale, B., Swindlehurst-Chan, J. & Blelloch, R. The roles of microRNAs in mouse development. Nat. Rev. Genet. 22, 307–323 (2021).

Article  CAS  PubMed  Google Scholar 

Marcel, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal https://doi.org/10.14806/ej.17.1.200 (2011).

Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, Z. et al. NormExpression: an R package to normalize gene expression data using evaluated methods. Front. Genet. 10, 400 (2019).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif