CRISPR-Combo–mediated orthogonal genome editing and transcriptional activation for plant breeding

Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jinek, M. et al. A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, C. Genome engineering for crop improvement and future agriculture. Cell 184, 1621–1635 (2021).

Article  CAS  PubMed  Google Scholar 

Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

Article  PubMed  Google Scholar 

Jiang, F. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 863–867 (2016).

Article  Google Scholar 

Zhu, X. et al. Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9. Nat. Struct. Mol. Biol. 26, 679–685 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787–799.e17 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, Y. et al. Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system. Mol. Plant 10, 1242–1245 (2017).

Article  CAS  PubMed  Google Scholar 

Meng, X. et al. Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol. Plant 10, 1238–1241 (2017).

Article  CAS  PubMed  Google Scholar 

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, T. P., Newby, G. A. & Liu, D. R. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat. Protoc. 16, 1089–1128 (2021).

Article  CAS  PubMed  Google Scholar 

Molla, K. A., Sretenovic, S., Bansal, K. C. & Qi, Y. Precise plant genome editing using base editors and prime editors. Nat. Plants 7, 1166–1187 (2021).

Article  CAS  PubMed  Google Scholar 

Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

Article  CAS  PubMed  Google Scholar 

Pan, C., Sretenovic, S. & Qi, Y. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Curr. Opin. Plant Biol. 60, 101980 (2021).

Article  CAS  PubMed  Google Scholar 

Pan, C. et al. CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nat. Plants 7, 942–953 (2021).

Article  CAS  PubMed  Google Scholar 

Zhang, Y., Malzahn, A. A., Sretenovic, S. & Qi, Y. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 5, 778–794 (2019).

Article  PubMed  Google Scholar 

Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Pan, C. et al. Boosting plant genome editing with a versatile CRISPR-Combo system. Nat. Plants 8, 513–525 (2022).

Article  CAS  PubMed  Google Scholar 

Kiani, S. et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat. Methods 12, 1051–1054 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breinig, M. et al. Multiplexed orthogonal genome editing and transcriptional activation by Cas12a. Nat. Methods 16, 51–54 (2019).

Article  CAS  PubMed  Google Scholar 

Ren, Q. et al. Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnol. J. 19, 2052–2068 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Atkins, P. A. & Voytas, D. F. Overcoming bottlenecks in plant gene editing. Curr. Opin. Plant Biol. 54, 79–84 (2020).

Article  CAS  PubMed  Google Scholar 

Khanday, I., Santos-Medellín, C. & Sundaresan, V. Rice embryogenic trigger BABY BOOM1 promotes somatic embryogenesis by upregulation of auxin biosynthesis genes. N. Phytol. 238, 673–687 (2020).

Article  Google Scholar 

Shen, J. P. et al. Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. Nat. Methods 14, 573–576 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boettcher, M. et al. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat. Biotechnol. 36, 170–178 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9, 297–308 (2008).

Article  CAS  PubMed  Google Scholar 

Debernardi, J. M. & Rowan, B. A. Make it a Combo. Nat. Plants 8, 457–458 (2022).

Article  CAS  PubMed  Google Scholar 

Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grünewald, J. et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat. Biotechnol. 38, 861–864 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, X. et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat. Biotechnol. 38, 856–860 (2020).

Article  CAS  PubMed  Google Scholar 

Sakata, R. C. et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nat. Biotechnol. 38, 865–869 (2020).

Article  CAS  PubMed  Google Scholar 

Li, C. et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. 38, 875–882 (2020).

Article  CAS 

留言 (0)

沒有登入
gif