Cerebrolysin Attenuates Exacerbation of Neuropathic Pain, Blood-spinal Cord Barrier Breakdown and Cord Pathology Following Chronic Intoxication of Engineered Ag, Cu or Al (50–60 nm) Nanoparticles

Marchesini M, Ippolito C, Ambrosini L, Bignami EG, Fasani M, Abbenante D (2021) Prevalence of low back and cervical back pain in military helicopter crews: an underestimated italian problem. J Spec Oper Med. 21(2):67–71

Article  PubMed  Google Scholar 

Karasel S, Cebeci D, Sonmez I (2020) Chronic pain and pain belief in active military personnel: a cross-sectional study. Med Arch 74(6):455–462. https://doi.org/10.5455/medarh.2020.74.455-462

Article  PubMed  PubMed Central  Google Scholar 

Cohen SP, Vase L, Hooten WM (2021) Chronic pain: an update on burden, best practices, and new advances. Lancet 397(10289):2082–2097. https://doi.org/10.1016/S0140-6736(21)00393-7

Article  PubMed  Google Scholar 

Lemme NJ, Johnston B, DeFroda SF, Owens BD, Kriz PK (2020) Incidence of combat sport-related mild traumatic brain injuries presenting to the emergency department from 2012 to 2016. Clin J Sport Med 30(6):585–590. https://doi.org/10.1097/JSM.0000000000000633

Article  PubMed  Google Scholar 

Waung MW, Abrams GM (2012) Combat-related headache and traumatic brain injury. Curr Pain Headache Rep 16(6):533–538. https://doi.org/10.1007/s11916-012-0294-7.PMID:22956047Review

Article  PubMed  Google Scholar 

Pearn ML, Niesman IR, Egawa J, Sawada A, Almenar-Queralt A, Shah SB, Duckworth JL, Head BP (2017) Pathophysiology Associated with traumatic brain injury: current treatments and potential novel therapeutics. Cell Mol Neurobiol 37(4):571–585. https://doi.org/10.1007/s10571-016-0400-1

Article  CAS  PubMed  Google Scholar 

Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN (2017) Neuropathic pain Nat Rev Dis Primers 16(3):17002. https://doi.org/10.1038/nrdp.2017.2

Article  Google Scholar 

Torta R, Ieraci V, Zizzi F (2017) A review of the emotional aspects of neuropathic pain: from comorbidity to co-pathogenesis. Pain Ther 6(Suppl1):11–17. https://doi.org/10.1007/s40122-017-0088-z

Article  PubMed  PubMed Central  Google Scholar 

Bader, Christine E., 2018 Pain In Active Duty Military Members: The Relationship Of Persistent Acute And Chronic Pain With Physical, Mental, And Social Health. Publicly Accessible Penn Dissertations. 3067. https://repository.upenn.edu/edissertations/3067

Apkarian AV, Sosa Y, Krauss BR, Thomas PS, Fredrickson BE, Levy RE, Chialvo DR (2004) Chronic pain patients are impaired on an emotional decision-making task. Pain 108(1–2):129–136. https://doi.org/10.1016/j.pain.2003.12.015

Article  PubMed  Google Scholar 

Attridge N, Keogh E, Eccleston C (2016) The effect of pain on task switching: pain reduces accuracy and increases reaction times across multiple switching paradigms. Pain 157(10):2179–2193. https://doi.org/10.1097/j.pain.0000000000000627

Article  PubMed  Google Scholar 

Baker KS, Gibson S, Georgiou-Karistianis N, Roth RM, Giummarra MJ (2016) Everyday executive functioning in chronic pain: specific deficits in working memory and emotion control, predicted by mood, medications, and pain interference. Clin J Pain 32(8):673–680. https://doi.org/10.1097/ajp.0000000000000313

Article  PubMed  Google Scholar 

Timm A, Schmidt-Wilcke T, Blenk S, Studer B (2021) Altered social decision making in patients with chronic pain. Psychol Med 5:1–10. https://doi.org/10.1017/S0033291721004359

Article  Google Scholar 

Fiore NT, Austin PJ (2016) Are the emergence of affective disturbances in neuropathic pain states contingent on supraspinal neuroinflammation? Brain Behav Immun 56:397–411. https://doi.org/10.1016/j.bbi.2016.04.012. (Epub 2016 Apr 24)

Article  CAS  PubMed  Google Scholar 

Satta G, Ursi M, Garofalo E, Masala E, Pili C, D’Andrea I, Tocco A, Avataneo G, Flore MV, Campagna M, Cocco P (2017) Mortality of the personnel of an interforce military shooting range in Sardinia, Italy: 1990–2010. Med Lav 108(5):332–341. https://doi.org/10.23749/mdl.v108i5.6535

Article  PubMed  Google Scholar 

Sargent Jr. JF. 2014 The National Nanotechnology Initiative: overview, reauthorization, and appropriations issues Dec 16, Congressional research service 7–5700 www.crs.gov RL34401 https://sgp.fas.org/crs/misc/RL34401.pdf

Xie H, Mason MM, Wise JP Sr (2011) Genotoxicity of metal nanoparticles. Rev Environ Health 26(4):251–268. https://doi.org/10.1515/reveh.2011.033.PMID:22435324Review

Article  CAS  PubMed  Google Scholar 

Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MT (2015) Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale 7(6):2154–2198. https://doi.org/10.1039/c4nr06670g.PMID:25580680Review

Article  CAS  PubMed  Google Scholar 

Saglam N, Korkusuz F, Prasad R [Eds]. 2021 Nanotechnology applications in health and environmental science. Nanotechnology in the life sciences. p 422 , Springer Nature, Switzerland

Government Accountability Office (2017) VA health care: improvements needed in data and monitoring of clinical productivity and Efficiency. Government Accountability Office, Washington

Google Scholar 

Hoge CW, Castro CA, Messer SC et al (2004) Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care. N Engl J Med 351:13–22

Article  CAS  PubMed  Google Scholar 

Sharma A, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Wiklund L, Sharma HS (2021) Manganese nanoparticles induce blood-brain barrier disruption, cerebral blood flow reduction, edema formation and brain pathology associated with cognitive and motor dysfunctions. Prog Brain Res 265:385–406. https://doi.org/10.1016/bs.pbr.2021.06.015. (Epub 2021 Aug 13)

Article  PubMed  Google Scholar 

Sharma HS, Lafuente JV, Muresanu DF, Sahib S, Tian ZR, Menon PK, Castellani RJ, Nozari A, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A (2021) Neuroprotective effects of insulin like growth factor-1 on engineered metal nanoparticles Ag, Cu and Al induced blood-brain barrier breakdown, edema formation, oxidative stress, upregulation of neuronal nitric oxide synthase and brain pathology. Prog Brain Res 266:97–121. https://doi.org/10.1016/bs.pbr.2021.06.005. (Epub 2021 Aug 13)

Article  PubMed  Google Scholar 

Rahimpour M, Karami M, Haeri RA (2020) Silver nanoparticles (Ag-NPs) in the central amygdala protect the rat conditioned by morphine from withdrawal attack due to naloxone via high-level nitric oxide. Naunyn Schmiedebergs Arch Pharmacol 393(5):857–866. https://doi.org/10.1007/s00210-019-01784-2. (Epub 2020 Jan)

Article  CAS  PubMed  Google Scholar 

Sharma HS, Hussain S, Schlager J, Ali SF, Sharma A (2010) Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl 106:359–364. https://doi.org/10.1007/978-3-211-98811-4_65

Article  PubMed  Google Scholar 

Menon PK, Muresanu DF, Sharma A, Mössler H, Sharma HS (2012) Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets 11(1):40–49. https://doi.org/10.2174/187152712799960781

Article  CAS  PubMed  Google Scholar 

Sharma HS, Patnaik R, Sharma A, Sjöquist PO, Lafuente JV (2009) Silicon dioxide nanoparticles (SiO2, 40–50 nm) exacerbate pathophysiology of traumatic spinal cord injury and deteriorate functional outcome in the rat. An experimental study using pharmacological and morphological approaches. J Nanosci Nanotechnol. 9(8):4970–80. https://doi.org/10.1166/jnn.2009.1717

Article  CAS  PubMed  Google Scholar 

Sharma HS, Muresanu DF, Lafuente JV, Sjöquist PO, Patnaik R, Sharma A (2015) Nanoparticles exacerbate both ubiquitin and heat shock protein expressions in spinal cord injury: neuroprotective effects of the proteasome inhibitor carfilzomib and the antioxidant compound H-290/51. Mol Neurobiol 52(2):882–898. https://doi.org/10.1007/s12035-015-9297-9

Article  CAS  PubMed  Google Scholar 

Sharma HS, Sharma A (2007) Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res 162:245–273. https://doi.org/10.1016/S0079-6123(06)62013-X

Article  CAS  PubMed  Google Scholar 

Sharma HS, Muresanu DF, Patnaik R, Stan AD, Vacaras V, Perju-Dumbrav L, Alexandru B, Buzoianu A, Opincariu I, Menon PK, Sharma A (2011) Superior neuroprotective effects of cerebrolysin in heat stroke following chronic intoxication of Cu or Ag engineered nanoparticles. A comparative study with other neuroprotective agents using biochemical and morphological approaches in the rat. J Nanosci Nanotechnol 11(9):7549–69. https://doi.org/10.1166/jnn.2011.5114

Article  CAS  PubMed  Google Scholar 

Sharma A, Muresanu DF, Mössler H, Sharma HS (2012) Superior neuroprotective effects of cerebrolysin in nanoparticle-induced exacerbation of hyperthermia-induced brain pathology. CNS Neurol Disord Drug Targets 11(1):7–25. https://doi.org/10.2174/187152712799960790

Article  CAS  PubMed  Google Scholar 

Gordh T, Chu H, Sharma HS (2006) Spinal nerve lesion alters blood-spinal cord barrier function and activates astrocytes in the rat. Pain 124(1–2):211–221. https://doi.org/10.1016/j.pain.2006.05.020

Article  PubMed  Google Scholar 

Ahmed MM, Lee H, Clark Z, Miranpuri GS, Nacht C, Patel K, Liu L, Joslin J, Kintner D, Resnick DK (2014) Pathogenesis of spinal cord injury induced edema and neuropathic pain: expression of multiple isoforms of wnk1. Ann Neurosci 21(3):97–103. https://doi.org/10.5214/ans.0972.7531.210305

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gordh T, Sharma HS (2006) Chronic spinal nerve ligation induces microvascular permeability disturbances, astrocytic reaction, and structural changes in the rat spinal cord. Acta Neurochir Suppl 96:335–340. https://doi.org/10.1007/3-211-30714-1_70

Article  CAS  PubMed  Google Scholar 

Gordh T, Sharma HS, Azizi M, Alm P, Westman J (2000) Spinal nerve lesion induces upregulation of constitutive isoform of heme oxygenase in the spinal cord. An immunohistochemical investigation in the rat. Amino Acids 19(1):373–81. https://doi.org/10.1007/s007260070068

Article  CAS  PubMed  Google Scholar 

Gordh T, Sharma HS, Alm P, Westman J (1998) Spinal nerve lesion induces upregulation of neuronal nitric oxide synthase in the spinal cord. An immunohistochemical investigation in the rat. Amino Acids 14(1–3):105–12. https://doi.org/10.1007/BF01345250

Article  CAS  PubMed  Google Scholar 

Sharma HS, Westman J, Gordh T, Alm P (2000) Topical application of brain derived neurotrophic factor influences upregulation of constitutive isoform of heme oxygenase in the spinal cord following trauma an experimental study using immunohistochemistry in the rat. Acta Neurochir Suppl 76:365–369. https://doi.org/10.1007/978-3-7091-6346-7_76

Article  CAS  PubMed 

留言 (0)

沒有登入
gif