Endoplasmic Reticulum Stress-Activated Neuronal and Microglial Autophagy Contributes to Postoperative Cognitive Dysfunction in Neonatal rats

Gui L, Lei X, Zuo Z (2017) Decrease of glial cell-derived neurotrophic factor contributes to anesthesia- and surgery-induced learning and memory dysfunction in neonatal rats. J Mol Med (Berl) 95(4):369–379 https://doi.org/10.1007/s00109-017-1521-9 (2017)

Ye JS, Chen L, Lu YY, Lei SQ, Peng M, Xia ZY (2019) Honokiol-Mediated Mitophagy Ameliorates Postoperative Cognitive Impairment Induced by Surgery/Sevoflurane via Inhibiting the Activation of NLRP3 Inflammasome in the Hippocampus. Oxidative Med Cell Long https://doi.org/10.1155/2019/8639618 (2019)

Xie Y, Zhao W, Zuo Z (2021) Glial cell-derived neurotrophic factor decrease may mediate learning, memory and behavior impairments in rats after neonatal surgery. Brain Res Bull 178, 9–16, https://doi.org/10.1016/j.brainresbull.2021.10.020 (2021)

Kobayashi Y, Tokuda N, Adachi S, Takeshima Y, Hirose M, Shima M (2020) Association between surgical procedures under general anesthesia in infancy and developmental outcomes at 1 year: the Japan Environment and Children’s Study. Environmental health and preventive medicine 25(1):32 https://doi.org/10.1186/s12199-020-00873-6 (2021)

Ing CH, DiMaggio CJ, Malacova E, Whitehouse AJ, Hegarty MK, Feng T, Brady JE, von Ungern-Sternberg BS, Davidson AJ, Wall MM, Wood AJ, Li G, Sun LS (2014) Comparative analysis of outcome measures used in examining neurodevelopmental effects of early childhood anesthesia exposure. Anesthesiology 120(6):1319–1332 https://doi.org/10.1097/aln.0000000000000248 (2014)

Bakri MH, Ismail EA, Ali MS, Elsedfy GO, Sayed TA, Ibrahim A (2015) Behavioral and emotional effects of repeated general anesthesia in young children. Saudi J Anaesth 9(2):161–166 https://doi.org/10.4103/1658-354X.152843 (2015)

Davidson AJ, Sun LS (2018) Clinical Evidence for Any Effect of Anesthesia on the Developing Brain. Anesthesiology 128(4):840–853 https://doi.org/10.1097/ALN.0000000000001972 (2018)

Guzel E, Arlier S, Guzeloglu-Kayisli O, Tabak MS, Ekiz T, Semerci N, Larsen K, Schatz F, Lockwood CJ, Kayisli UA (2017) Endoplasmic Reticulum Stress and Homeostasis in Reproductive Physiology and Pathology. International J Mol Sci 18(4):792 https://doi.org/10.3390/ijms18040792 (2017)

Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annual review of pathology 10173-194 https://doi.org/10.1146/annurev-pathol-012513-104649 (2015)

Grossmann D, Berenguer-Escuder C, Bellet ME, Scheibner D, Bohler J, Massart F, Rapaport D, Skupin A, Fouquier d’Hérouël A, Sharma M, Ghelfi J, Raković A, Lichtner P, Antony P, Glaab E, May P, Dimmer KS, Fitzgerald JC, Grünewald A, Krüger R (2019) Mutations in RHOT1 Disrupt Endoplasmic Reticulum-Mitochondria Contact Sites Interfering with Calcium Homeostasis and Mitochondrial Dynamics in Parkinson’s Disease. Antioxidants Redox Sig 31(16):1213–1234 https://doi.org/10.1089/ars.2018.7718 (2019)

Colla E (2019) Linking the endoplasmic reticulum to Parkinson’s Disease and Alpha-Synucleinopathy. Front NeuroSci 13:560. https://doi.org/10.3389/fnins.2019.00560

Article  PubMed  PubMed Central  Google Scholar 

Santos LE, Ferreira ST (2018) Crosstalk between endoplasmic reticulum stress and brain inflammation in Alzheimer’s Disease. Neuropharmacology 136(Pt B):350–360 https://doi.org/10.1016/j.neuropharm.2017.11.016 (2018)

Lin L, Liu G, Yang L (2019) Crocin Improves Cognitive Behavior in Rats with Alzheimer’s Disease by Regulating Endoplasmic Reticulum Stress and Apoptosis. BioMed Res Int 2019:9454913 https://doi.org/10.1155/2019/9454913 (2019)

Halloran M, Ragagnin AMG, Vidal M, Parakh S, Yang S, Heng B, Grima N, Shahheydari H, Soo KY, Blair I, Guillemin GJ, Sundaramoorthy V, Atkin JD (2020) Amyotrophic lateral sclerosis-linked UBQLN2 mutants inhibit endoplasmic reticulum to Golgi transport, leading to Golgi fragmentation and ER stress. Cell Mol Life Sci 77:3859–3873 https://doi.org/10.1007/s00018-019-03394-w (2020)

Cunnea P, Mháille AN, McQuaid S, Farrell M, McMahon J, FitzGerald U (2011) Expression profiles of endoplasmic reticulum stress-related molecules in demyelinating lesions and multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England) 17(7):808–818 https://doi.org/10.1177/1352458511399114 (2011)

Carloni S, Albertini MC, Galluzzi L, Buonocore G, Proietti F, Balduini W (2014) Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol 255:103–112 https://doi.org/10.1016/j.expneurol.2014.03.002 (2014)

Xin J, Shan W, Li J, Yu H, Zuo Z (2022) Activation of the Lateral Habenula-Ventral Tegmental Area Neural Circuit Contributes to Postoperative Cognitive Dysfunction in Mice. Adv Sci (Weinh) 9(22):e2202228 https://doi.org/10.1002/advs.202202228 (2022)

Cai Y, Arikkath J, Yang L, Guo ML, Periyasamy P, Buch S (2016) Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 12(2):225–244 https://doi.org/10.1080/15548627.2015.1121360 (2016)

Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathology 221(1):3–12 https://doi.org/10.1002/path.2697 (2010)

Paquet C, Nicoll JA, Love S, Mouton-Liger F, Holmes C, Hugon J, Boche D (2018) Downregulated apoptosis and autophagy after anti-Aβ immunotherapy in Alzheimer’s disease. Brain Path (Zurich, Switzerland) 28(5):603–610 https://doi.org/10.1111/bpa.12567 (2018)

Liang Y, Sigrist S (2018) Autophagy and proteostasis in the control of synapse aging and disease. Curr Opin Neurobiol 48:113–121 https://doi.org/10.1016/j.conb.2017.12.006 (2018)

Zhang Z, Wang X, Zhang D, Liu Y, Li L (2019) Geniposide-mediated protection against amyloid deposition and behavioral impairment correlates with downregulation of mTOR signaling and enhanced autophagy in a mouse model of Alzheimer’s disease. Aging 11(2):536–548 https://doi.org/10.18632/aging.101759 (2019)

Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26(24):9220–9231 https://doi.org/10.1128/mcb.01453-06 (2006)

Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L (2011) Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res 1402:109–121 https://doi.org/10.1016/j.brainres.2011.05.049 (2011)

Xie Y, Zhao W, Zuo Z (2022) Glial cell-derived neurotrophic factor decrease may mediate learning, memory and behavior impairments in rats after neonatal surgery. Brain Res Bull 178:9–16 https://doi.org/10.1016/j.brainresbull.2021.10.020 (2022)

Zhang H, Sun XR, Wang J, Zhang ZZ, Zhao HT, Li HH, Ji MH, Li KY, Yang JJ (2016) Reactive Oxygen Species-mediated Loss of Phenotype of Parvalbumin Interneurons Contributes to Long-term Cognitive Impairments After Repeated Neonatal Ketamine Exposures. Neurotox Res 30(4):593–605 https://doi.org/10.1007/s12640-016-9653-1 (2016)

Ibrahim IM, Abdelmalek DH, Elfiky AA (2019) GRP78: A cell’s response to stress. Life Sci 226:156–163 https://doi.org/10.1016/j.lfs.2019.04.022 (2019)

Yoon YM, Lee JH, Yun SP, Han YS, Yun CW, Lee HJ, Noh H, Lee SJ, Han HJ, Lee SH (2016) Tauroursodeoxycholic acid reduces ER stress by regulating of Akt-dependent cellular prion protein. Sci Rep 6:39838 https://doi.org/10.1038/srep39838 (2016)

Wu J, Chen S, Liu H, Zhang Z, Ni Z, Chen J, Yang Z, Nie Y, Fan D (2018) Tunicamycin specifically aggravates ER stress and overcomes chemoresistance in multidrug-resistant gastric cancer cells by inhibiting N-glycosylation. J Exp Clin Cancer Res 37(1):272 https://doi.org/10.1186/s13046-018-0935-8 (2018)

Ing CH, DiMaggio CJ, Whitehouse AJ, Hegarty MK, Sun M, von Ungern-Sternberg BS, Davidson AJ, Wall MM, Li G, Sun LS (2014) Neurodevelopmental outcomes after initial childhood anesthetic exposure between ages 3 and 10 years. J Neurosurg Anesthesiol 26(4):377–386 https://doi.org/10.1097/ANA.0000000000000121 (2014)

Landin JD, Palac M, Carter JM, Dzumaga Y, Santerre-Anderson JL, Fernandez GM, Savage LM, Varlinskaya EI, Spear LP, Moore SD, Swartzwelder HS, Fleming RL, Werner DF (2019) General anesthetic exposure in adolescent rats causes persistent maladaptations in cognitive and affective behaviors and neuroplasticity. Neuropharmacol 150:153–163 https://doi.org/10.1016/j.neuropharm.2019.03.022 (2019)

Ing C, Ma X, Sun M, Lu Y, Wall MM, Olfson M, Li G (2020) Exposure to Surgery and Anesthesia in Early Childhood and Subsequent Use of Attention Deficit Hyperactivity Disorder Medications. Anesth Analg 131(3):723–733 https://doi.org/10.1213/ANE.0000000000004619 (2020)

Wang Z, Li L, Zhao H, Peng S, Zuo Z (2015) Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice. Metabolism 64(8):917–925 https://doi.org/10.1016/j.metabol.2015.04.010 (2015)

Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146(5):682–695 https://doi.org/10.1016/j.cell.2011.07.030 (2011)

Yang N, Li L, Li Z, Ni C, Cao Y, Liu T, Tian M, Chui D, Guo X (2017) Protective effect of dapsone on cognitive impairment induced by propofol involves hippocampal autophagy. Neurosci Lett 649:85–92 https://doi.org/10.1016/j.neulet.2017.04.019 (2017)

Yang N, Li Z, Han D, Mi X, Tian M, Liu T, Li Y, He J, Kuang C, Cao Y, Li L, Ni C, Wang JQ, Guo X (2020) Autophagy prevents hippocampal α-synuclein oligomerization and early cognitive dysfunction after anesthesia/surgery in aged rats. Aging 12(8):7262–7281 https://doi.org/10.18632/aging.103074 (2020)

Li X, Wu Z, Zhang Y, Xu Y, Han G, Zhao P (2017) Activation of Autophagy Contributes to Sevoflurane-Induced Neurotoxicity in Fetal Rats. Front Mol Neurosci 10:432 https://doi.org/10.3389/fnmol.2017.00432 (2017)

Lu Q, Harris VA, Kumar S, Mansour HM, Black SM (2015) Autophagy in neonatal hypoxia ischemic brain is associated with oxidative stress. Redox Biol 6:516–523 https://doi.org/10.1016/j.redox.2015.06.016 (2015)

Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell death and differentiation 16(7):966–975 https://doi.org/10.1038/cdd.2009.33 (2009)

Giaime E, Tong Y, Wagner LK, Yuan Y, Huang G, Shen J (2017) Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice. Neuron 96(4):796–807.e796 https://doi.org/10.1016/j.neuron.2017.09.036 (2017)

Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, Rocktäschel P, Croteau DL, Akbari M, Greig NH, Fladby T, Nilsen H, Cader MZ, Mattson MP, Tavernarakis N, Bohr VA (2019) Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22(3):401–412 https://doi.org/10.1038/s41593-018-0332-9 (2019)

Wang MM, Feng YS, Yang SD, Xing Y, Zhang J, Dong F, Zhang F (2019) The Relationship Between Autophagy and Brain Plasticity in Neurological Diseases. Front Cell Neurosci 13:228 https://doi.org/10.3389/fncel.2019.00228 (2019)

Lai Z, Shan W, Li J, Min J, Zeng X, Zuo Z (2021) Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice. Mol Psych 26:7167–7187 https://doi.org/10.1038/s41380-021-01291-y (2021)

Wen J, Li Z, Zuo Z (2022) Postoperative learning and memory dysfunction is more severe in males but is not persistent and transmittable to next generation in young adult rats. Journal of Neurosurg Anesth https://doi.org/10.1097/ANA.0000000000000856 (2022)

留言 (0)

沒有登入
gif