Emerging Targets for Modulation of Immune Response and Inflammation in Stroke

Kim E, Yang J, Beltran CD, Cho S (2014) Role of spleen-derived monocytes/macrophages in acute ischemic brain injury. J Cereb Blood Flow Metab 34:1411–1419. https://doi.org/10.1038/jcbfm.2014.101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, Maeda M, Fagan SC, Carroll JE, Conway SJ (2004) SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 63:84–96. https://doi.org/10.1093/jnen/63.1.84

Article  CAS  PubMed  Google Scholar 

Kim JY, Kawabori M, Yenari MA (2014) Innate inflammatory responses in stroke: mechanisms and potential therapeutic targets. Current Med Chem 21:2076–2097

Article  CAS  Google Scholar 

Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16:1–24. https://doi.org/10.1186/s12974-019-1516-2

Article  Google Scholar 

Kalra P, Khan H, Kaur A, Singh TG (2022) Mechanistic insight on autophagy modulated molecular pathways in cerebral ischemic injury: from preclinical to clinical perspective. Neurochem Res. https://doi.org/10.1007/s11064-021-03500-0

Article  PubMed  Google Scholar 

Stefano GB, Büttiker P, Kream RM (2022) Reassessment of the blood-brain barrier: a potential target for viral entry into the immune-privileged brain. Germs 12:99–101. https://doi.org/10.18683/germs.2022.1310

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan H, Kashyap A, Kaur A, Singh TG (2020) Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 72:1513–1527. https://doi.org/10.1111/jphp.13336

Article  CAS  PubMed  Google Scholar 

Simpson E (2006) A historical perspective on immunological privilege. Immunol Rev 213:12–22. https://doi.org/10.1111/j.1600-065x.2006.00434.x

Article  PubMed  Google Scholar 

Khan H, Tiwari P, Kaur A, Singh TG (2021) Sirtuin acetylation and deacetylation: a complex paradigm in neurodegenerative disease. Mol Neurobiol 58:3903–3917. https://doi.org/10.1007/s12035-021-02387-w

Article  CAS  PubMed  Google Scholar 

Miró-Mur F, Pérez-de-Puig I, Ferrer-Ferrer M, Urra X, Justicia C, Chamorro A, Planas AM (2016) Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation. Brain Behav Immun 53:18–33. https://doi.org/10.1016/j.bbi.2015.08.010

Article  CAS  PubMed  Google Scholar 

Agliardi C, Guerini FR, Zanzottera M, Bolognesi E, Picciolini S, Caputo D, Rovaris M, Pasanisi MB, Clerici M (2023) Myelin basic protein in oligodendrocyte-derived extracellular vesicles as a diagnostic and prognostic biomarker in multiple sclerosis: a pilot study. Int J Mol Sci 24:894. https://doi.org/10.3390/ijms24010894

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodríguez AM, Rodríguez J, Giambartolomei GH (2022) Microglia at the crossroads of pathogen-induced neuroinflammation. ASN Neuro 14:17590914221104566. https://doi.org/10.1177/17590914221104566

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goshi N, Kim H, Seker (2022) Primary cortical cell tri-culture-based screening of neuroinflammatory response in toll-like receptor activation. Biomedicines 2022(10):2122. https://doi.org/10.3390/biomedicines10092122

Article  CAS  Google Scholar 

Kwon J, Arsenis C, Suessmilch M, McColl A, Cavanagh J, Morris BJ (2022) Differential effects of toll-like receptor activation and differential mediation by map kinases of immune responses in microglial cells. Cell Mol Neurobiol 42:2655–2671. https://doi.org/10.1007/s10571-021-01127-x

Article  CAS  PubMed  Google Scholar 

de Vicente LG, Pinto AP, da Rocha AL, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, da Silva AS (2020) Role of TLR4 in physical exercise and cardiovascular diseases. Cytokine 136:155273. https://doi.org/10.1016/j.cyto.2020.155273

Article  CAS  PubMed  Google Scholar 

Marks KE, Cho K, Stickling C, Reynolds JM (2021) Toll-like receptor 2 in autoimmune inflammation. Immune Network 21:18. https://doi.org/10.4110/in.2021.21.e18

Article  Google Scholar 

Sadik NAH, Shaker OG, Ghanem HZ, Hassan HA, Abdel-Hamid AHZ (2015) Single-nucleotide polymorphism of Toll-like receptor 4 and interleukin-10 in response to interferon-based therapy in Egyptian chronic hepatitis C patients. Arch Virol 160:2181–2195. https://doi.org/10.1007/s00705-015-2493-0

Article  CAS  PubMed  Google Scholar 

Pechmann M, Kenny NJ, Pott L, Heger P, Chen YT, Buchta T, Özüak O, Lynch J, Roth S (2021) Striking parallels between dorsoventral patterning in Drosophila and Gryllus reveal a complex evolutionary history behind a model gene regulatory network. Elife 10:e68287. https://doi.org/10.7554/eLife.68287

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Xie L, Yang C, Ren C, Wang B, Zhang Z, Wang Y, Jin K, Yang GY (2015) Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10. Front Cell Neurosci 9:361. https://doi.org/10.3389/fncel.2015.00361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Liang C (2016) Innate recognition of microbial-derived signals in immunity and inflammation. Sci China Life Sci 59:1210–1217. https://doi.org/10.1007/s11427-016-0325-6

Article  CAS  PubMed  Google Scholar 

Yu L, Feng Z (2018) The role of toll-like receptor signaling in the progression of heart failure. Mediat Inflamm. https://doi.org/10.1155/2018/9874109

Article  Google Scholar 

Denes A, Vidyasagar R, Feng J, Narvainen J, McColl BW, Kauppinen RA, Allan SM (2007) Proliferating resident microglia after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 27:1941–1953. https://doi.org/10.1038/sj.jcbfm.9600495

Article  CAS  PubMed  Google Scholar 

Kumar V (2020) Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 89:107087. https://doi.org/10.1016/j.intimp.2020.10708

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang YW, Thompson R, Zhang H, Xu H (2011) APP processing in Alzheimer’s disease. Mol Brain 4:1–13. https://doi.org/10.1186/1756-6606-4-3

Article  CAS  Google Scholar 

Komurcu HF, Kilic N, Demirbilek ME, Akin KO (2016) Plasma levels of vitamin B12, epidermal growth factor and tumor necrosis factor-alpha in patients with Alzheimer dementia. Int J Res Med Sci 4:734–738

Article  Google Scholar 

Jialal I, Kaur H, Devaraj S (2014) Toll-like receptor status in obesity and metabolic syndrome: a translational perspective. J Clin Endocrinol Metab 99:39–48. https://doi.org/10.1210/jc.2013-3092

Article  CAS  PubMed  Google Scholar 

Amani H, Habibey R, Shokri F, Hajmiresmail SJ, Akhavan O, Mashaghi A, Pazoki-Toroudi H (2019) Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci Rep 9:1–15

Article  CAS  Google Scholar 

Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S, Krueger C, Nitsch R, Meisel A, Weber JR (2007) Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. Neuroimunnol 190:2833. https://doi.org/10.1016/j.jneuroim.2007.07.023

Article  CAS  Google Scholar 

Hari P, Millar FR, Tarrats N, Birch J, Quintanilla A, Rink C, Fernández-Duran I, Muir M, Finch AJ, Brunton VG, Passos JF (2019) The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Sci Adv 5:eaaw0254. https://doi.org/10.1126/sciadv.aaw0254

Article  CAS  PubMed  PubMed Central  Google Scholar 

Group D, Škokić S, Kriz J, Gajović S (2019) Tlr2 deficiency is associated with enhanced elements of neuronal repair and caspase 3 activation following brain ischemia. Scientific Rep 9:1–10. https://doi.org/10.1038/s41598-019-39541-3

Article  CAS  Google Scholar 

Kielian T (2006) Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res 83:711–730. https://doi.org/10.1002/jnr.20767

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lively S, Schlichter LC (2018) Microglia responses to pro-inflammatory stimuli (LPS, IFNγ+ TNFα) and reprogramming by resolving cytokines (IL-4, IL-10). Front Cell Neurosci 12:215. https://doi.org/10.3389/fncel.2018.00215

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beschorner R, Simon P, Schauer N, Mittelbronn M, Schluesener HJ, Trautmann K, Dietz K, Meyermann R (2007) Reactive astrocytes and activated microglial cells express EAAT1, but not EAAT2, reflecting a neuroprotective potential following ischemia. Histopathology 50:897–910. https://doi.org/10.14670/HH-22.515

Article  CAS  PubMed  Google Scholar 

Ishikawa M, Cooper D, Arumugam TV, Zhang JH, Nanda A, Granger DN (2004) Platelet–leukocyte–endothelial cell interactions after middle cerebral artery occlusion and reperfusion. J Cereb Blood Flow Metab 24:907–915. https://doi.org/10.1097/01.WCB.0000132690.96836.7F

Article  CAS  PubMed  Google Scholar 

Arumugam TV, Salter JW, Chidlow JH, Ballantyne CM, Kevil CG, Granger DN (2004) Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. Am J Physiol Heart Circ Physiol 287:H2555–H2560. https://doi.org/10.1152/ajpheart.00588.2004

Article  CAS  PubMed 

留言 (0)

沒有登入
gif