Immunosuppressant Tacrolimus Treatment Delays Acute Seizure Occurrence, Reduces Elevated Oxidative Stress, and Reverses PGF2α Burst in the Brain of PTZ-Treated Rats

Fisher RS, Acevedo C, Arzimanoglou A et al (2014) ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55:475–482. https://doi.org/10.1111/epi.12550

Article  PubMed  Google Scholar 

Singh A, Trevick S (2016) The epidemiology of global epilepsy. Neurol Clin 34:837–847. https://doi.org/10.1016/j.ncl.2016.06.015

Article  PubMed  Google Scholar 

Kwan P, Schachter SC, Brodie MJ (2011) Drug-resistant epilepsy. N Engl J Med 365:919–926. https://doi.org/10.1056/NEJMra1004418

Article  CAS  PubMed  Google Scholar 

Arulsamy A, Shaikh MF (2022) Epilepsy-associated comorbidities among adults: a plausible therapeutic role of gut microbiota. Neurobiol Dis 165:105648. https://doi.org/10.1016/j.nbd.2022.105648

Article  CAS  PubMed  Google Scholar 

Plosker GL, Foster RH (2000) Tacrolimus: a further update of its pharmacology and therapeutic use in the management of organ transplantation. Drugs 59:323–389. https://doi.org/10.2165/00003495-200059020-00021

Article  CAS  PubMed  Google Scholar 

Chwiej J, Janeczko K, Marciszko M et al (2010) Neuroprotective action of FK-506 (tacrolimus) after seizures induced with pilocarpine: quantitative and topographic elemental analysis of brain tissue. J Biol Inorg Chem 15:283–289. https://doi.org/10.1007/s00775-009-0597-2

Article  CAS  PubMed  Google Scholar 

Wen Y, Fu P, Wu K et al (2017) Inhibition of calcineurin A by FK506 suppresses seizures and reduces the expression of GluN2B in membrane fraction. Neurochem Res 42:2154–2166. https://doi.org/10.1007/s11064-017-2221-0

Article  CAS  PubMed  Google Scholar 

Shin HJ, Jeon BT, Kim J et al (2012) Effect of the calcineurin inhibitor FK506 on K+-Cl- cotransporter 2 expression in the mouse hippocampus after kainic acid-induced status epilepticus. J Neural Transm (Vienna) 119:669–677. https://doi.org/10.1007/s00702-011-0746-y

Article  CAS  PubMed  Google Scholar 

Liu J, Si Z, Li S et al (2017) The calcineurin inhibitor FK506 prevents cognitive impairment by inhibiting reactive astrogliosis in Pilocarpine-Induced Status Epilepticus rats. Front Cell Neurosci 11:428. https://doi.org/10.3389/fncel.2017.00428

Article  CAS  PubMed  Google Scholar 

Wang A, Si Z, Xue P et al (2019) Tacrolimus protects hippocampal neurons of rats with status epilepticus through suppressing oxidative stress and inhibiting mitochondrial pathway of apoptosis. Brain Res 1715:176–181. https://doi.org/10.1016/j.brainres.2019.02.031

Article  CAS  PubMed  Google Scholar 

Moriwaki A, Lu YF, Hayashi Y et al (1996) Immunosuppressant FK506 prevents mossy fiber sprouting induced by kindling stimulation. Neurosci Res 25:191–194. https://doi.org/10.1016/0168-0102(96)01036-x

Article  CAS  PubMed  Google Scholar 

Moriwaki A, Lu YF, Tomizawa K, Matsui H (1998) An immunosuppressant, FK506, protects against neuronal dysfunction and death but has no effect on electrographic and behavioral activities induced by systemic kainate. Neuroscience 86:855–865. https://doi.org/10.1016/s0306-4522(98)00071-2

Article  CAS  PubMed  Google Scholar 

Nishimura T, Imai H, Minabe Y et al (2006) Beneficial effects of FK506 for experimental temporal lobe epilepsy. Neurosci Res 56:386–390. https://doi.org/10.1016/j.neures.2006.08.006

Article  CAS  PubMed  Google Scholar 

Setkowicz Z, Ciarach M (2007) Neuroprotectants FK-506 and cyclosporin a ameliorate the course of pilocarpine-induced seizures. Epilepsy Res 73:151–155. https://doi.org/10.1016/j.eplepsyres.2006.09.001

Article  CAS  PubMed  Google Scholar 

Xiong T-Q, Chen L-M, Tan B-H et al (2018) The effects of calcineurin inhibitor FK506 on actin cytoskeleton, neuronal survival and glial reactions after pilocarpine-induced status epilepticus in mice. Epilepsy Res 140:138–147. https://doi.org/10.1016/j.eplepsyres.2018.01.007

Article  CAS  PubMed  Google Scholar 

Singh A, Kumar G, Naidu PS, Kulkarni SK (2003) Protective effect of FK506 (tacrolimus) in pentylenetetrazol-induced kindling in mice. Pharmacol Biochem Behav 75:853–860. https://doi.org/10.1016/s0091-3057(03)00160-6

Article  CAS  PubMed  Google Scholar 

Wang A, Si Z, Li X et al (2019) FK506 attenuated pilocarpine-induced epilepsy by reducing inflammation in rats. Front Neurol 10:971. https://doi.org/10.3389/fneur.2019.00971

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki K, Omura S, Ohashi Y et al (2001) FK506 facilitates chemical kindling induced by pentylenetetrazole in rats. Epilepsy Res 46:279–282. https://doi.org/10.1016/s0920-1211(01)00284-4

Article  CAS  PubMed  Google Scholar 

Takei S, Hasegawa-Ishii S, Uekawa A et al (2012) Immunohistochemical demonstration of increased prostaglandin Fâ‚‚α levels in the rat hippocampus following kainic acid-induced seizures. Neuroscience 218:295–304. https://doi.org/10.1016/j.neuroscience.2012.05.013

Article  CAS  PubMed  Google Scholar 

Baran H, Heldt R, Hertting G (1987) Increased prostaglandin formation in rat brain following systemic application of kainic acid. Brain Res 404:107–112. https://doi.org/10.1016/0006-8993(87)91360-6

Article  CAS  PubMed  Google Scholar 

Naffah-Mazzacoratti MG, Bellíssimo MI, Cavalheiro EA (1995) Profile of prostaglandin levels in the rat hippocampus in pilocarpine model of epilepsy. Neurochem Int 27:461–466. https://doi.org/10.1016/0197-0186(95)00053-b

Article  CAS  PubMed  Google Scholar 

Egg D, Herold M, Rumpl E, Günther R (1980) Prostaglandin F2 alpha levels in human cerebrospinal fluid in normal and pathological conditions. J Neurol 222:239–248. https://doi.org/10.1007/BF00313153

Article  CAS  PubMed  Google Scholar 

Durankuş F, Şenkal E, Sünnetçi E et al (2020) Beneficial effects of ibuprofen on pentylenetetrazol-induced convulsion. Neurochem Res 45:2409–2416. https://doi.org/10.1007/s11064-020-03101-3

Article  CAS  PubMed  Google Scholar 

Rojas A, Chen D, Ganesh T et al (2019) The COX-2/prostanoid signaling cascades in seizure disorders. Expert Opin Ther Targets 23:1–13. https://doi.org/10.1080/14728222.2019.1554056

Article  CAS  PubMed  Google Scholar 

Dhir A (2012) Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci. https://doi.org/10.1002/0471142301.ns0937s58

Article  PubMed  Google Scholar 

Erbas O, Yılmaz M, Korkmaz HA et al (2013) Oxytocin inhibits pentylentetrazol-induced seizures in the rat. Peptides 40:141–144. https://doi.org/10.1016/j.peptides.2012.12.003

Article  CAS  PubMed  Google Scholar 

Erbaş O, Solmaz V, Aksoy D (2015) Inhibitor effect of dexketoprofen in rat model of pentylenetetrazol-induced seizures. Neurol Res 37:1096–1101. https://doi.org/10.1179/1743132814Y.0000000391

Article  CAS  PubMed  Google Scholar 

Erdogan A, Erdogan MA, Atasoy O, Erbas O (2021) Effects of the calcium channel blocker otilonium bromide on seizure activity in rats with pentylenetetrazole-induced convulsions. Neurochem Res 46:1717–1724. https://doi.org/10.1007/s11064-021-03310-4

Article  CAS  PubMed  Google Scholar 

Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294. https://doi.org/10.1016/0013-4694(72)90177-0

Article  CAS  PubMed  Google Scholar 

Kurz JE, Sheets D, Parsons JT et al (2001) A significant increase in both basal and maximal calcineurin activity in the rat pilocarpine model of status epilepticus. J Neurochem 78:304–315. https://doi.org/10.1046/j.1471-4159.2001.00426.x

Article  CAS  PubMed  Google Scholar 

Kurz JE, Rana A, Parsons JT, Churn SB (2003) Status epilepticus-induced changes in the subcellular distribution and activity of calcineurin in rat forebrain. Neurobiol Dis 14:483–493. https://doi.org/10.1016/j.nbd.2003.08.018

Article  CAS  PubMed  Google Scholar 

Kaneko K, Itoh K, Berliner LJ et al (2002) Consequences of nitric oxide generation in epileptic-seizure rodent models as studied by in vivo EPR. Magn Reson Med 48:1051–1056. https://doi.org/10.1002/mrm.10297

Article  CAS  PubMed  Google Scholar 

Kudin AP, Kudina TA, Seyfried J et al (2002) Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur J Neurosci 15:1105–1114. https://doi.org/10.1046/j.1460-9568.2002.01947.x

Article  PubMed  Google Scholar 

Jin Y, Lim C-M, Kim S-W et al (2009) Fluoxetine attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. Brain Res 1281:108–116. https://doi.org/10.1016/j.brainres.2009.04.053

Article  CAS  PubMed  Google Scholar 

Borowicz-Reutt KK, Czuczwar SJ (2020) Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacol Rep 72:1218–1226. https://doi.org/10.1007/s43440-020-00143-w

Article  PubMed  PubMed Central  Google Scholar 

Younus H (2018) Therapeutic potentials of superoxide dismutase. Int J Health Sci (Qassim) 12:88–93

留言 (0)

沒有登入
gif