Evaluation of the clinical relevance of vancomycin for the treatment of Lyme disease

Wormser GP, Dattwyler RJ, Shapiro ED, Halperin JJ, Steere AC, Klempner MS, et al. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2006;43:1089–134.

Article  Google Scholar 

Ljøstad U, Skogvoll E, Eikeland R, Midgard R, Skarpaas T, Berg A, et al. Oral doxycycline versus intravenous ceftriaxone for European Lyme neuroborreliosis: A multicenter, non-inferiority, double-blind, randomized trial. Lancet Neurol. 2008;7(8):690–5.

Article  Google Scholar 

Wormser GP, Halperin JJ. Oral doxycycline for neuroborreliosis. Lancet Neurol. 2008;7:665–6.

Article  Google Scholar 

Kazragis RJ, Dever LL, Jorgensen JH, Barbour AG. In vivo activities of ceftriaxone and vancomycin against Borrelia spp. in the mouse brain and other sites. Antimicrob Agents Chemother. 1996;40:2632–6.

Article  CAS  Google Scholar 

Wu X, Sharma B, Niles S, O’Connor K, Schilling R, Matluck N, et al. Identifying vancomycin as an effective antibiotic for killing Borrelia burgdorferi. Antimicrob Agents Chemother. 2018;62:e01201-18. https://doi.org/10.1128/AAC.01201-18.

Article  PubMed  PubMed Central  Google Scholar 

Harman MW, Hamby AE, Boltyanskiy R, Belperron AA, Bockenstedt LK, Kress H, et al. Vancomycin reduces cell wall stiffness and slows swim speed of the Lyme disease bacterium. Biophys J. 2017;112:746–54.

Article  CAS  Google Scholar 

Dever LL, Jorgensen JH, Barbour AG. In vitro activity of vancomycin against the spirochete Borrelia burgdorferi. Antimicrob Agents Chemother. 1993;37:1115–21.

Article  CAS  Google Scholar 

Hunfeld K‑P, Weigand J, Wichelhaus TA, Kekoukh E, Kraiczy P, Brade V. In vitro activity of mezlocillin, meropenem, aztreonam, vancomycin, teicoplanin, ribostamycin, and fusidic acid against Borrelia burgdorferi. Int J Antimicrob Agents. 2001;17:203–8.

Article  CAS  Google Scholar 

Sartakova ML, Dobrikova EY, Terekhova DA, Devis R, Bugrysheva JV, Morozova OV, et al. Novel antibiotic-resistance markers in pGK-12-derived vectors for Borrelia burgdorferi. Gene. 2003;303:131–7.

Article  CAS  Google Scholar 

Sharma B, Brown AV, Matluck NE, Hu LT, Lewis K. Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persistor cells. Antimicrob Agents Chemother. 2015;59:4616–24.

Article  CAS  Google Scholar 

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 28th ed. Wayne: CLSI; 2018. CLSI Supplement M100.

Google Scholar 

Bruniera FR, Ferreira FM, Saviolli LR, Bacci MR, Feder D, da Luz Gonçalves Pedreira M, et al. The use of vancomycin with its therapeutic and adverse effects: A review. Eur Rev Med Pharmacol Sci. 2015;19(4):694–700.

CAS  PubMed  Google Scholar 

Barbour AG. Borreliaceae. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S, editors. Bergey’s manual of systematics of archaea and bacteria. 2018. https://doi.org/10.1002/9781118960608.fbm00308.

Chapter  Google Scholar 

Docobo-Pérez F, López-Rojas R, Domínguez-Herrera J, Jiménez-Mejias ME, Pichardo C, Ibáñez-Martínez J, et al. Efficacy of linezolid versus a pharmacodynamically optimized vancomycin therapy in an experimental pneumonia model caused by methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2012;67:1961–7.

Article  Google Scholar 

Placencia FX, Kong L, Weisman LE. Treatment of methicillin-resistant Staphylococcus aureus in neonatal mice: Lysostaphin versus vancomycin. Pediatr Res. 2009;65(4):420–4.

Article  CAS  Google Scholar 

Lepak AJ, Zhao M, Andes DR. Comparative pharmacodynamics of telavancin and vancomycin in the neutropenic murine thigh and lung infection models against Staphylococcus aureus. Antimicrob Agents Chemother. 2017; https://doi.org/10.1128/AAC.00281-17.

Article  PubMed  PubMed Central  Google Scholar 

Louie A, Boyne MT II, Patel V, Huntley C, Liu W, Fikes S, et al. Pharmacodynamic evaluation of the activities of six parenteral vancomycin products available in the United States. Antimicrob Agents Chemother. 2015;59:622–32.

Article  Google Scholar 

Dominguez-Herrera J, Lopez-Rojas R, Smani Y, Labrador-Herrera G, Pachon J. Efficacy of ceftaroline versus vancomycin in an experimental foreign-body and systemic infection model caused by bio-film producing methicillin-resistant Staphylococcus epidermidis. Int J Antimicrob Agents. 2016;48:661–5.

Article  CAS  Google Scholar 

Peetermans WE, Hoogeterp JJ, Hazekamp-van Dokkum A‑M, van den Broek P, Mattie H. Anti-staphylococcal activities of teicoplanin and vancomycin in vitro and in an experimental infection. Antimicrob Agents Chemother. 1990;34:1869–74.

Article  CAS  Google Scholar 

Moise PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus respiratory tract infections. Clin Pharmacokinet. 2004;43:925–42.

Article  Google Scholar 

Sakoulas G, Geriak M, Nizet V. Is a reported penicillin allergy sufficient grounds to forego the multidimensional antimicrobial benefits of β‑lactam antibiotics? Clin Infect Dis. 2019;68(1):157–64. https://doi.org/10.1093/cid/ciy557.

Article  PubMed  Google Scholar 

Forouzesh A, Moise PA, Sakoulas G. Vancomycin ototoxicity: A re-evaluation in an era of increasing doses. Antimicrob Agents Chemother. 2009;53:483–6.

Article  CAS  Google Scholar 

Beach JE, Perrott J, Turgeon RD, Ensom MHH. Penetration of vancomycin into the cerebrospinal fluid: A systematic review. Clin Pharmacokinet. 2017;56(12):1479–90.

Article  CAS  Google Scholar 

Luft BJ, Steinman CR, Neimark HC, Muralidhar B, Rush T, Finkel MF, et al. Invasion of the central nervous system by Borrelia burgdorferi in acute disseminated infection. JAMA. 1992;267:1364–7.

Article  CAS  Google Scholar 

Dattwyler RJ, Luft BJ, Kunkel MJ, Finkel MF, Wormser GP, Rush TJ, et al. Ceftriaxone compared with doxycycline for the treatment of acute disseminated Lyme disease. N Engl J Med. 1997;337:289–94.

Article  CAS  Google Scholar 

Wormser GP, Ramanathan R, Nowakowski J, McKenna D, Holmgren D, Visintainer P, et al. Duration of antibiotic therapy for early Lyme disease. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2003;138:697–704.

Article  CAS  Google Scholar 

Nowakowski J, Nadelman RB, Sell R, McKenna D, Cavaliere FC, Holmgren D, et al. Long-term follow-up of patients with culture-confirmed Lyme disease. Am J Med. 2003;115:91–6.

Article  Google Scholar 

Weitzner E, McKenna D, Nowakowski J, Scavarda C, Dornbush R, Bittker S, et al. Long-term assessment of post-treatment symptoms in patients with culture-confirmed early Lyme disease. Clin Infect Dis. 2015;61:1800–6.

Article  Google Scholar 

Wormser GP, Schwartz I. Antibiotic treatment of animals infected with Borrelia burgdorferi. Clin Microbiol Rev. 2009;22:387–95.

Article  CAS  Google Scholar 

Wormser GP, O’Connell S, Pachner AR, Schwartz I, Shapiro ED, Stanek G, et al. Critical analysis of a doxycycline treatment trial of rhesus macaques infected with Borrelia burgdorferi. Diagn Microbiol Infect Dis. 2018;92:183–8.

Article  CAS  Google Scholar 

Hansen K, Hovmark A, Lebech A‑M, Lebech K, Olsson I, Halkier-Sørensen L, et al. Roxithromycin in Lyme borreliosis: Discrepant results of an in vitro and in vivo animal susceptibility study and a clinical trial in patients with erythema migrans. Acta Derm Venereol. 1992;72(4):297–300.

CAS  PubMed  Google Scholar 

Cadavid D, Barbour AG. Neuroborreliosis during relapsing fever: Review of the clinical manifestations, pathology, and treatment of infections in humans and experimental animals. Clin Infect Dis. 1998;26:151–64.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif