Tick saliva and its role in pathogen transmission

Guglielmone AA, Robbins RG, Apanaskevich DA, et al. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the world: a list of valid species names. Zootaxa. 2010;2528:1–28.

Google Scholar 

Apanaskevich DA, Oliver JH. Life cycles and natural history of ticks. In: Sonenshine DE, Roe RM, editors. Biology of ticks. 2nd ed. Oxford: Oxford University Press; 2013. pp. 59–73.

Google Scholar 

Kahl O. Hard ticks as vectors—some basic issues. Wien Klin Wochenschr. 2018;130:479–83.

PubMed  Google Scholar 

Rizzoli A, Silaghi C, Obiegala A, et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Health. 2014;2:1–26. https://doi.org/10.3389/fpubh.2014.00251/abstract.

Article  Google Scholar 

Hackenberg M, Kotsyfakis M. Exosome-mediated pathogen transmission by arthropod vectors. Trends Parasitol. 2018;34:549–52.

PubMed  Google Scholar 

Kaufman RW. Ticks: physiological aspects with implications for pathogen transmission. Ticks Tick Borne Dis. 2010;1:11–22.

Google Scholar 

Nuttall PA. Wonders of tick saliva. Ticks Tick Borne Dis. 2019;10:470–81. https://doi.org/10.1016/j.ttbdis.2018.11.005.

Article  PubMed  Google Scholar 

Suppan J, Engel B, Marchetti-Deschmann M, Nürnberger S. Tick attachment cement—reviewing the mysteries of a biological skin plug system. Biol Rev Camb Philos Soc. 2018;93:1056–76.

PubMed  Google Scholar 

Richter D, Matuschka F, Spielman A, Mahadevan L. How ticks get under your skin: insertion mechanics of the feeding apparatus of Ixodes ricinus ticks. Proc R Soc, B, Biol Sci. 2013; https://doi.org/10.1098/rspb.2013.1758.

Article  Google Scholar 

Ribeiro JMC. Role of saliva in blood-feeding by arthropods. Annu Rev Entomol. 1987;32:463–78. https://doi.org/10.1146/annurev.en.32.010187.002335.

Article  CAS  PubMed  Google Scholar 

Francischetti IMB. Platelet aggregation inhibitors from hematophagous animals. Toxicon. 2010;56:1130–44.

CAS  PubMed  Google Scholar 

Fontaine A, Diouf I, Bakkali N, et al. Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors. 2011;4(1):187.

CAS  PubMed  PubMed Central  Google Scholar 

Chmelar J, Calvo E, Pedra JHF, Francischetti IMB, Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J Proteomics. 2012;75:3842–54. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3383439&tool=pmcentrez&rendertype=abstract.

CAS  PubMed  PubMed Central  Google Scholar 

Kotál J, Langhansová H, Lieskovská J, et al. Modulation of host immunity by tick saliva. J Proteomics. 2015;128:58–68. http://www.sciencedirect.com/science/article/pii/S1874391915300610.

PubMed  PubMed Central  Google Scholar 

Šimo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol. 2017;7:281. https://doi.org/10.3389/fcimb.2017.00281/full.

Article  PubMed  PubMed Central  Google Scholar 

Wikel SK. Tick-host-pathogen systems immunobiology: an interactive trio. Front Biosci. 2018;23:265–83. https://www.bioscience.org/2018/v23/af/4590/fulltext.php?bframe=PDF.

CAS  Google Scholar 

Mudenda L, Pierlé SA, Turse JE, et al. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva. Int J Parasitol. 2014;44:1029–37.

CAS  PubMed  Google Scholar 

De Castro MH, De Klerk D, Pienaar R, Rees DJG, Mans BJ. Sialotranscriptomics of Rhipicephalus zambeziensis reveals intricate expression profiles of secretory proteins and suggests tight temporal transcriptional regulation during blood-feeding. Parasit Vectors. 2017;10(1):1–20.

Google Scholar 

Karim S, Ribeiro JMC. An insight into the sialome of the Lone Star tick, Amblyomma americanum, with a glimpse on its time dependent gene expression. PLoS ONE. 2015;10:e131292. https://doi.org/10.1371/journal.pone.0131292.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perner J, Kropáčková S, Kopáček P, Ribeiro JMC. Sialome diversity of ticks revealed by RNAseq of single tick salivary glands. Plos Negl Trop Dis. 2018;12:e6410. https://doi.org/10.1371/journal.pntd.0006410.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Paesen GC, Nuttall PA, Barbour AG. Male ticks help their mates to feed. Nature. 1998;391:753–4.

CAS  PubMed  Google Scholar 

Titus RG, Ribeiro JM. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science. 1988;239:1306–8.

CAS  PubMed  Google Scholar 

Jones LD, Davies CR, Steele GM, Nuttall PA. A novel mode of arbovirus transmission involving a nonviremic host. Science. 1987;237:775–7.

CAS  PubMed  Google Scholar 

Jones LD, Hodgson E, Nuttall PA. Enhancement of virus transmission by tick salivary glands. J Gen Virol. 1989;70:1895–8.

PubMed  Google Scholar 

Nuttall PA, Labuda M. Saliva-assisted transmission of tick-borne pathogens. In: Ticks: biology, disease and control. Cambridge: Cambridge University Press; 2008. pp. 205–19.

Google Scholar 

Nuttall PA, Labuda M. Tick-host interactions: saliva-activated transmission. Parasitology. 2004;129:S177–89.

CAS  PubMed  Google Scholar 

Abdeladhim M, Kamhawi S, Valenzuela JG. What’s behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol. 2014;28:691–703. https://doi.org/10.1016/j.meegid.2014.07.028.

Article  PubMed  PubMed Central  Google Scholar 

Pingen M, Schmid MA, Harris E, McKimmie CS. Mosquito biting modulates skin response to virus infection. Trends Parasitol. 2017;33:645–57. https://doi.org/10.1016/j.pt.2017.04.003.

Article  PubMed  Google Scholar 

Bernard Q, Jaulhac B, Boulanger N. Smuggling across the border: how arthropod-borne pathogens evade and exploit the host defense system of the skin. J Invest Dermatol. 2013;134:1211–9.

PubMed  Google Scholar 

Liu XY, Bonnet SI. Hard tick factors implicated in pathogen transmission. Plos Negl Trop Dis. 2014;8:e2566.

PubMed  PubMed Central  Google Scholar 

Lindquist L, Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371:1861–71.

PubMed  Google Scholar 

Radolf JD, Caimano MJ, Stevenson B, Hu LT. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol. 2012;10:87–99.

CAS  PubMed  PubMed Central  Google Scholar 

Medlock JM, Hansford KM, Bormane A, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors. 2013;6:1.

PubMed  PubMed Central  Google Scholar 

Eisen RJ, Eisen L, Beard CB. County-scale distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the continental United States. J Med Entomol. 2016;53(2):349–86.

PubMed  Google Scholar 

Jaenson TGT, Värv K, Fröjdman I, et al. First evidence of established populations of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in Sweden. Parasit Vectors. 2016;9:377. https://doi.org/10.1186/s13071-016-1658-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korenberg EI, Kovalevskii YV, Gorelova NB, Nefedova VV. Comparative analysis of the roles of Ixodes persulcatus and I. trianguliceps ticks in natural foci of ixodid tick-borne borrelioses in the Middle Urals, Russia. Ticks Tick Borne Dis. 2015;6:316–21.

PubMed  Google Scholar 

Leighton PA, Koffi JK, Pelcat Y, Lindsay LR, Ogden NH. Predicting the speed of tick invasion: an empirical model of range expansion for the Lyme disease vector Ixodes scapularis in Canada. J Appl Ecol. 2012;49:457–64.

Google Scholar 

Hubálek Z, Rudolf I. Tick-borne viruses in Europe. Parasitol Res. 2012;111:9–36.

PubMed  Google Scholar 

Simmonds P, Becher P, Bukh J, et al. ICTV virus taxonomy profile: flaviviridae. J Gen Virol. 2017;98:2–3.

CAS  PubMed  PubMed Central  Google Scholar 

Ecker M, Allison SL, Meixner T, Heinz FX. Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. J Gen Virol. 1999;80:179–85. https://doi.org/10.1099/0022-1317-80-1-179.

Article  CAS  PubMed  Google Scholar 

Kovalev SY, Mukhacheva TA. Reconsidering the classification of tick-borne encephalitis virus within the Siberian subtype gives new insights into its evolutionary history. Infect Genet Evol. 2017;55:159–65.

CAS  PubMed  Google Scholar 

Dai X, Shang G, Lu S, Yang J, Xu J. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-Tibet Plateau, China article. Emerg Microbes Infect. 2018;7:74. https://doi.org/10.1038/s41426-018-0081-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alekseev AN, Chunikhin SP, Rukhkian MI, Stefutkina LF. The possible role of the salivary gland substrate in ixodid ticks as an adjuvant enhancing arbovirus transmission. Parazitologiia. 1991;1:28–31.

Google Scholar 

Labuda M, Jones LD, Williams T, Nuttall PA. Enhancement of tick-borne encephalitis virus transmission by tick salivary gland extracts. Med Vet Entomol. 1993;7:193–6.

CAS  PubMed  Google Scholar 

Labuda M, Jones LD, Williams T, Danielova V, Nuttall PA. Efficient transmission of tick-borne encephalitis virus between cofeeding ticks. J Med Entomol. 1993;30:295–9.

CAS  PubMed  Google Scholar 

Labuda M, Nuttall PA, Kožuch O, Elečková E, Williams T, Žuffová E, et al. Non-viraemic transmission of tick-borne encephalitis virus: a mechanism for arbovirus survival in nature. Experientia. 1993;49:802–5.

留言 (0)

沒有登入
gif