M2 macrophage-derived extracellular vesicles augment immune evasion and development of colorectal cancer via a circRNA_CCDC66/microRNA-342-3p/metadherin axis

Abdelmohsen K et al (2017) (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 10(1080/15476286):1279788

Google Scholar 

Bao Z et al (2022) SNAIL induces EMT and lung metastasis of tumours secreting CXCL2 to promote the invasion of M2-type immunosuppressed macrophages in colorectal cancer. Int J Biol Sci 18:2867–2881. https://doi.org/10.7150/ijbs.66854

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao Y et al (2022) microRNA-15b-5p encapsulated by M2 macrophage-derived extracellular vesicles promotes gastric cancer metastasis by targeting BRMS1 and suppressing DAPK1 transcription. J Exp Clin Cancer Res 41:152. https://doi.org/10.1186/s13046-022-02356-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang J, Li H, Zhu Z, Mei P, Hu W, Xiong X, Tao J (2021) microRNA-21–5p from M2 macrophage-derived extracellular vesicles promotes the differentiation and activity of pancreatic cancer stem cells by mediating KLF3. Cell Biol Toxicol. https://doi.org/10.1007/s10565-021-09597-x

Article  PubMed  PubMed Central  Google Scholar 

Dhiman G et al (2019) Metadherin: a therapeutic target in multiple cancers. Front Oncol 9:349. https://doi.org/10.3389/fonc.2019.00349

Article  PubMed  PubMed Central  Google Scholar 

Dong L et al (2021) Mechanical stretch induces osteogenesis through the alternative activation of macrophages. J Cell Physiol 236:6376–6390. https://doi.org/10.1002/jcp.30312

Article  CAS  PubMed  Google Scholar 

Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, Diaz LA Jr (2019) Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol 16:361–375. https://doi.org/10.1038/s41575-019-0126-x

Article  PubMed  PubMed Central  Google Scholar 

Giannone G, Ghisoni E, Genta S, Scotto G, Tuninetti V, Turinetto M, Valabrega G (2020) Immuno-metabolism and microenvironment in cancer: key players for immunotherapy. Int J Mol Sci. https://doi.org/10.3390/ijms21124414

Article  PubMed  PubMed Central  Google Scholar 

Guo K, Qian K, Shi Y, Sun T, Wang Z (2021) LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150–5p. Cell Death Dis 12:1097. https://doi.org/10.1038/s41419-021-04386-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388. https://doi.org/10.1038/nature11993

Article  CAS  PubMed  Google Scholar 

Hsiao KY, Lin YC, Gupta SK, Chang N, Yen L, Sun HS, Tsai SJ (2017) Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res 77:2339–2350. https://doi.org/10.1158/0008-5472.CAN-16-1883

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joseph NA et al (2018) The role of HGF-MET pathway and CCDC66 cirRNA expression in EGFR resistance and epithelial-to-mesenchymal transition of lung adenocarcinoma cells. J Hematol Oncol 11:74. https://doi.org/10.1186/s13045-018-0557-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karreth FA, Pandolfi PP (2013) ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov 3:1113–1121. https://doi.org/10.1158/2159-8290.CD-13-0202

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M (2017) RNA in extracellular vesicles. Wiley Interdiscip Rev RNA. https://doi.org/10.1002/wrna.1413

Article  PubMed  PubMed Central  Google Scholar 

Komoll RM et al (2021) MicroRNA-342–3p is a potent tumour suppressor in hepatocellular carcinoma. J Hepatol 74:122–134. https://doi.org/10.1016/j.jhep.2020.07.039

Article  CAS  PubMed  Google Scholar 

Kong X et al (2019) LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215. J Cell Physiol 234:9105–9117. https://doi.org/10.1002/jcp.27587

Article  CAS  PubMed  Google Scholar 

Lan J et al (2019) M2 macrophage-derived exosomes promote cell migration and invasion in colon. Cancer Cancer Res 79:146–158. https://doi.org/10.1158/0008-5472.CAN-18-0014

Article  CAS  PubMed  Google Scholar 

Lin J, Cai D, Li W, Yu T, Mao H, Jiang S, Xiao B (2019) Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer. Clin Biochem 74:60–68. https://doi.org/10.1016/j.clinbiochem.2019.10.012

Article  CAS  PubMed  Google Scholar 

Lin YC, Yu YS, Lin HH, Hsiao KY (2020) Oxaliplatin-induced DHX9 phosphorylation promotes oncogenic circular RNA CCDC66 expression and development of chemoresistance. Cancers (basel). https://doi.org/10.3390/cancers12030697

Article  PubMed  PubMed Central  Google Scholar 

Liu Z et al (2019) Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis 10:55. https://doi.org/10.1038/s41419-018-1287-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Cheng Y, Wang Y, Zhang Y (2021) Circular RNA circVAPA contributes to non-small-cell lung cancer progression via miR-342–3p-dependent regulation of ZEB2. World J Surg Oncol 19:335. https://doi.org/10.1186/s12957-021-02447-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo N, Liu S, Li X, Hu Y (2021) Zhang K (2021) Circular RNA circHIPK3 promotes breast cancer progression via sponging MiR-326. Cell Cycle 10(1080/15384101):1939476

Google Scholar 

Min AKT et al (2021) Therapeutic potential of anti-VEGF receptor 2 therapy targeting for M2-tumor-associated macrophages in colorectal cancer. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-020-02676-8

Article  PubMed  Google Scholar 

Mo Y et al (2022) Circular RNA CCDC66 improves murine double minute 4 (MDM4) expression through targeting miR-370 in colorectal cancer. Comput Math Methods Med. https://doi.org/10.1155/2022/7723995

Article  PubMed  PubMed Central  Google Scholar 

Ortiz A (2021) Extracellular vesicles in cancer progression. Semin Cancer Biol 76:139–142. https://doi.org/10.1016/j.semcancer.2021.05.032

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piawah S, Venook AP (2019) Targeted therapy for colorectal cancer metastases: a review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer 125:4139–4147. https://doi.org/10.1002/cncr.32163

Article  PubMed  Google Scholar 

Shen M et al (2021) Therapeutic targeting of metadherin suppresses colorectal and lung cancer progression and metastasis. Cancer Res 81:1014–1025. https://doi.org/10.1158/0008-5472.CAN-20-1876

Article  CAS  PubMed  Google Scholar 

Smillie CL, Sirey T, Ponting CP (2018) Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk. Crit Rev Biochem Mol Biol 53:231–245. https://doi.org/10.1080/10409238.2018.1447542

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stadler M et al (2021) Stromal fibroblasts shape the myeloid phenotype in normal colon and colorectal cancer and induce CD163 and CCL2 expression in macrophages. Cancer Lett. https://doi.org/10.1016/j.canlet.2021.07.006

Article  PubMed  Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. https://doi.org/10.3322/caac.21660

Article  PubMed  Google Scholar 

Vo JN et al (2019) The landscape of circular RNA. Cancer Cell. https://doi.org/10.1016/j.cell.2018.12.021

Article  Google Scholar 

Wan JL et al (2022) MTDH antisense oligonucleotides reshape the immunosuppressive tumor microenvironment to sensitize Hepatocellular Carcinoma to immune checkpoint blockade therapy. Cancer Lett. https://doi.org/10.1016/j.canlet.2022.215750

Article  PubMed  Google Scholar 

Wang H, Tian T, Zhang J (2021) Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): from mechanism to therapy and prognosis. Int J Mol Sci. https://doi.org/10.3390/ijms22168470

Article  PubMed  PubMed Central  Google Scholar 

Wei C et al (2019) Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer 18:64. https://doi.org/10.1186/s12943-019-0976-4

Article  PubMed  PubMed Central  Google Scholar 

Wen J et al (2019) ACLY facilitates colon cancer cell metastasis by CTNNB1. J Exp Clin Cancer Res. https://doi.org/10.1186/s13046-019-1391-9

Article  PubMed  PubMed Central  Google Scholar 

Xu G et al (2020) Circular RNA CCDC66 promotes gastric cancer progression by regulating c-Myc and TGF-beta signaling pathways. J Cancer. https://doi.org/10.7150/jca.37718

Article  PubMed  PubMed Central  Google Scholar 

Yoon PS et al (2020) Advances in modeling the immune microenvironment of colorectal cancer. Front Immunol. https://doi.org/10.3389/fimmu.2020.614300

Article 

留言 (0)

沒有登入
gif