Ergogenic effect of ischemic preconditioning is not directly conferred to isolated skeletal muscle via blood

Addison PD, Neligan PC, Ashrafpour H et al (2003) Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am J Physiol Heart Circ Physiol 285:1435–1443. https://doi.org/10.1152/ajpheart.00106.2003

Article  Google Scholar 

Basalay M, Barsukevich V, Mastitskaya S et al (2012) Remote ischaemic pre- and delayed postconditioning—similar degree of cardioprotection but distinct mechanisms. Exp Physiol 97:908–917. https://doi.org/10.1113/expphysiol.2012.064923

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behrens M, Zschorlich V, Mittlmeier T et al (2020) Ischemic preconditioning did not affect central and peripheral factors of performance fatigability after submaximal isometric exercise. Front Physiol 11:1–14. https://doi.org/10.3389/fphys.2020.00371

Article  Google Scholar 

Caru M, Levesque A, Lalonde F, Curnier D (2019) An overview of ischemic preconditioning in exercise performance: a systematic review. J Sport Heal Sci 8:355–369. https://doi.org/10.1016/j.jshs.2019.01.008

Article  Google Scholar 

Christiansen D, Olsen CBL, Kehler F et al (2022) Active relative to passive ischemic preconditioning enhances intense endurance performance in well-trained men. Int J Sports Physiol Perform. https://doi.org/10.1123/ijspp.2021-0397

Article  PubMed  Google Scholar 

Clevidence MW, Mowery RE, Kushnick MR (2012) The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. Eur J Appl Physiol 112:3649–3654. https://doi.org/10.1007/s00421-012-2345-5

Article  CAS  PubMed  Google Scholar 

Cocking S, Wilson MG, Nichols D et al (2017) Is there an optimal ischaemic preconditioning dose to improve cycling performance. Int J Sports Physiol Perform 13(3):274–282

Article  Google Scholar 

Craig NP, Norton KI (2001) Characteristics of track cycling. Sport Med 31:457–468

Article  CAS  Google Scholar 

Crisafulli A, Tangianu F, Tocco F et al (2011) Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. J Appl Physiol 111:530–536. https://doi.org/10.1152/japplphysiol.00266.2011

Article  PubMed  Google Scholar 

da Mota GR, Willis SJ, Dos Santos SN et al (2019) Ischemic preconditioning maintains performance on two 5-km time trials in hypoxia. Med Sci Sports Exerc 51:2309–2317. https://doi.org/10.1249/MSS.0000000000002049

Article  CAS  PubMed  Google Scholar 

Dickson EW, Lorbar M, Porcaro WA et al (1999a) Rabbit heart can be “preconditioned” via transfer of coronary effluent. Am J Physiol Heart Circ Physiol 277:2451–2457. https://doi.org/10.1152/ajpheart.1999.277.6.h2451

Article  Google Scholar 

Dickson EW, Reinhardt CP, Renzi FP et al (1999b) Ischemic preconditioning may be transferable via whole blood transfusion: preliminary evidence. J Thromb Thrombolysis 8:123–129. https://doi.org/10.1023/A:1008911101951

Article  CAS  PubMed  Google Scholar 

Dickson EW, Tubbs RJ, Porcaro WA et al (2002) Myocardial preconditioning factors evoke mesenteric ischemic tolerance via opioid receptors and KATP channels. Am J Physiol Heart Circ Physiol 283:22–28. https://doi.org/10.1152/ajpheart.01055.2001

Article  Google Scholar 

Eddleston J, Christiansen SC, Zuraw BL (2006) Kinins and neuropeptides: bradykinin. Encycl Respir Med 4:502–506. https://doi.org/10.1016/B0-12-370879-6/00209-X

Article  Google Scholar 

El Messaoudi S, Vissers A, Thijssen D et al (2013) The effect of remote ischemic preconditioning on exercise-induced plasma troponin I appearance in healthy volunteers. Int J Cardiol 168:1612–1613. https://doi.org/10.1016/j.ijcard.2013.01.029

Article  PubMed  Google Scholar 

Enko K, Nakamura K, Yunoki K et al (2011) Intermittent arm ischemia induces vasodilatation of the contralateral upper limb. J Physiol Sci 61:507–513. https://doi.org/10.1007/s12576-011-0172-9

Article  PubMed  Google Scholar 

Felippe LC, Ferreira GA, Learsi SK et al (2018) Caffeine increases both total work performed above critical power and peripheral fatigue during a 4-km cycling time trial. J Appl Physiol 124:1491–1501. https://doi.org/10.1152/japplphysiol.00930.2017

Article  CAS  PubMed  Google Scholar 

Foley KM, Kourides IA, Inturrisi CE et al (1979) β-Endorphin: analgesic and hormonal effects in humans. Proc Natl Acad Sci USA 76:5377–5381. https://doi.org/10.1073/pnas.76.10.5377

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foster GP, Westerdahl DE, Foster LA et al (2011) Ischemic preconditioning of the lower extremity attenuates the normal hypoxic increase in pulmonary artery systolic pressure. Respir Physiol Neurobiol 179:248–253. https://doi.org/10.1016/j.resp.2011.09.001

Article  PubMed  Google Scholar 

Hakim TS, Sugimori K, Camporesi EM, Andersen G (1996) Half-life of nitric oxide in aqueous solutions with and without haemoglobin. Physiol Meas 17:267–277. https://doi.org/10.1088/0967-3334/17/4/004

Article  CAS  PubMed  Google Scholar 

Hausenloy DJ, Yellon DM (2008) Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res 79:377–386. https://doi.org/10.1093/cvr/cvn114

Article  CAS  PubMed  Google Scholar 

Hettinga FJ, De Koning JJ, Foster C (2009) V̇O2 response in supramaximal cycling time trial exercise of 750 to 4000 m. Med Sci Sports Exerc 41:230–236. https://doi.org/10.1249/MSS.0b013e3181831f0f

Article  PubMed  Google Scholar 

Hittinger EA, Maher JL, Nash MS et al (2014) Ischemic preconditioning does not improve peak exercise capacity at sea level or simulated high altitude in trained male cyclists. Appl Physiol Nutr Metab 40:65–71. https://doi.org/10.1139/apnm-2014-0080

Article  CAS  Google Scholar 

Horiuchi M, Endo J, Thijssen DHJ (2015) Impact of ischemic preconditioning on functional sympatholysis during handgrip exercise in humans. Physiol Rep 3:1–9. https://doi.org/10.14814/phy2.12304

Article  Google Scholar 

Incognito AV, Burr JF, Millar PJ (2016) The effects of ischemic preconditioning on human exercise performance. Sport Med 46:531–544. https://doi.org/10.1007/s40279-015-0433-5

Article  Google Scholar 

Jean-St-Michel E, Manlhiot C, Li J et al (2011) Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc 43:1280–1286. https://doi.org/10.1249/MSS.0b013e318206845d

Article  PubMed  Google Scholar 

Kharbanda RK, Mortensen UM, White PA et al (2002) Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 106:2881–2883. https://doi.org/10.1161/01.CIR.0000043806.51912.9B

Article  CAS  PubMed  Google Scholar 

Kilding AE, Sequeira GM, Wood MR (2018) Effects of ischemic preconditioning on economy, VO2 kinetics and cycling performance in endurance athletes. Eur J Appl Physiol 118:2541–2549. https://doi.org/10.1007/s00421-018-3979-8

Article  CAS  PubMed  Google Scholar 

Koch S, Della-Morte D, Dave KR et al (2014) Biomarkers for ischemic preconditioning: finding the responders. J Cereb Blood Flow Metab 34(6):933–941

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kraus AS, Pasha EP, Machin DR et al (2015) Bilateral upper limb remote ischemic preconditioning improves anaerobic power. Open Sport Med J 9:1–6. https://doi.org/10.2174/1874387001509010001

Article  Google Scholar 

Loenneke JP, Allen KM, Mouser JG et al (2015) Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. Eur J Appl Physiol 115:397–405. https://doi.org/10.1007/s00421-014-3030-7

Article  PubMed  Google Scholar 

Loukogeorgakis SP, Panagiotidou AT, Broadhead MW et al (2005) Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol 46:450–456. https://doi.org/10.1016/j.jacc.2005.04.044

Article  CAS  PubMed  Google Scholar 

Mastitskaya S, Marina N, Gourine A et al (2012) Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc Res 95:487–494. https://doi.org/10.1093/cvr/cvs212

Article  CAS  PubMed  PubMed Central  Google Scholar 

McIlvenna LC, Muggeridge DJ, Forrest LJ et al (2019) Lower limb ischemic preconditioning combined with dietary nitrate supplementation does not influence time-trial performance in well-trained cyclists. J Sci Med Sport 22:852–857. https://doi.org/10.1016/j.jsams.2019.01.011

Article  PubMed  Google Scholar 

Michelsen MM, Støttrup NB, Schmidt MR et al (2012) Exercise-induced cardioprotection is mediated by a bloodborne, transferable factor. Basic Res Cardiol. https://doi.org/10.1007/s00395-012-0260-x

Article  PubMed  Google Scholar 

Murrant CL, Barclay JK (1995) Endothelial cell products alter mammalian skeletal muscle function in vitro. Can J Physiol Pharmacol 73:736–741. https://doi.org/10.1139/y95-096

Article  CAS  PubMed  Google Scholar 

Murrant CL, Woodley NE, Barclay JK (1994) Effect of nitroprusside and endothelium-derived products on slow-twitch skeletal muscle function in vitro. Can J Physiol Pharmacol 72:1089–1093. https://doi.org/10.1139/y94-152

Article  CAS  PubMed  Google Scholar 

Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136. https://doi.org/10.1161/01.CIR.74.5.1124

Article  CAS  PubMed  Google Scholar 

O’Brien L, Jacobs I (2021) Methodological variations contributing to heterogenous ergogenic responses to ischemic preconditioning. Front Physiol 12:1–12. https://doi.org/10.3389/fphys.2021.656980

Article  Google Scholar 

Pang CY, Yang RZ, Zhong A et al (1995) Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovasc Res 29:782–788. https:/

留言 (0)

沒有登入
gif