Automated classification of urine biomarkers to diagnose pancreatic cancer using 1-D convolutional neural networks

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

Article  Google Scholar 

Taherian M, Wang H, Wang H: Pancreatic Ductal Adenocarcinoma: Molecular Pathology and Predictive Biomarkers. Cells. 2022; 11:3068.

Chen Q, Cherry DR, Nalawade V, Qiao EM, Kumar A, Lowy AM, Simpson DR, Murphy JD. Clinical Data Prediction Model to Identify Patients With Early-Stage Pancreatic Cancer. JCO Clin Cancer Inform. 2021;5:279–87.

Article  Google Scholar 

Malhotra A, Rachet B, Bonaventure A, Pereira SP, Woods LM. Can we screen for pancreatic cancer? Identifying a sub-population of patients at high risk of subsequent diagnosis using machine learning techniques applied to primary care data. PLoS One. 2021;16(6):e0251876.

Article  Google Scholar 

González-Gómez R, Pazo-Cid RA, Sarría L, Morcillo MÁ, Schuhmacher AJ: Diagnosis of Pancreatic Ductal Adenocarcinoma by Immuno-Positron Emission Tomography. J Clin Med. 2021; 10:1151.

Hameed BS, Krishnan UM: Artificial Intelligence-Driven Diagnosis of Pancreatic Cancer. Cancers. 2022; 14:5382.

Chang K, Creighton CJ, Davis C, Donehower L, Drummond J, Wheeler D, Ally A, Balasundaram M, Birol I, Butterfield YSN, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113–20.

Article  Google Scholar 

Arjmand B, Hamidpour SK, Tayanloo-Beik A, Goodarzi P, Aghayan HR, Adibi H, Larijani B: Machine learning: a new prospect in multi-omics data analysis of cancer.  Front Genet. 2022; 13:824451.

Cai Z, Poulos RC, Liu J, Zhong Q: Machine learning for multi-omics data integration in cancer. iScience 2022, 25(2):103798.

Wu H, Ou S, Zhang H, Huang R, Yu S, Zhao M, Tai S. Advances in biomarkers and techniques for pancreatic cancer diagnosis. Cancer Cell Int. 2022;22(1):220.

Article  Google Scholar 

Zhang W-H, Wang W-Q, Han X, Gao H-L, Li T-J, Xu S-S, Li S, Xu H-X, Li H, Ye L-Y, et al. Advances on diagnostic biomarkers of pancreatic ductal adenocarcinoma: A systems biology perspective. Comput Struct Biotechnol J. 2020;18:3606–14.

Article  Google Scholar 

Karar ME, Alotaibi B, Alotaibi M. Intelligent medical IoT-enabled automated microscopic image diagnosis of acute blood cancers. 2022;22(6):2348.

Google Scholar 

Lee J, Lee HS, Park SB, Kim C, Kim K, Jung DE, Song SY: Identification of circulating serum miRNAs as novel biomarkers in pancreatic cancer using a penalized algorithm. Int J Mol Sci. 2021; 22:1007.

Hsu T-K, Liu T-Y, Gould B, Decapite C, Zureikat A, Paniccia A, Ariazi E, Bertin M, Bourgon R, Coil K et al: Abstract PO-007: Plasma-based detection of pancreatic cancer: A multiomics approach. Cancer Res 2021, 81(22_Supplement):PO-007-PO-007.

Ko J, Bhagwat N, Yee SS, Ortiz N, Sahmoud A, Black T, Aiello NM, McKenzie L, O’Hara M, Redlinger C, et al. Combining machine learning and nanofluidic technology to diagnose pancreatic cancer using exosomes. ACS Nano. 2017;11(11):11182–93.

Article  Google Scholar 

Lepowsky E, Ghaderinezhad F, Knowlton S, Tasoglu S. Paper-based assays for urine analysis Biomicrofluidics. 2017;11(5): 051501.

Google Scholar 

Radon TP, Massat NJ, Jones R, Alrawashdeh W, Dumartin L, Ennis D, Duffy SW, Kocher HM, Pereira SP, Guarner L, et al. Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma. Clin Cancer Res. 2015;21(15):3512–21.

Article  Google Scholar 

Debernardi S, Massat NJ, Radon TP, Sangaralingam A, Banissi A, Ennis DP, Dowe T, Chelala C, Pereira SP, Kocher HM, et al. Noninvasive urinary miRNA biomarkers for early detection of pancreatic adenocarcinoma. Am J Cancer Res. 2015;5(11):3455–66.

Google Scholar 

Debernardi S, O’Brien H, Algahmdi AS, Malats N, Stewart GD, Plješa-Ercegovac M, Costello E, Greenhalf W, Saad A, Roberts R, et al. A combination of urinary biomarker panel and PancRISK score for earlier detection of pancreatic cancer: A case–control study. PLoS Med. 2020;17(12): e1003489.

Article  Google Scholar 

Ko J, Carpenter E, Issadore D. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst. 2016;141(2):450–60.

Article  Google Scholar 

Hyenne V, Goetz JG, Osmani N. Liquid Biopsies: Flowing Biomarkers. In: Caballero D, Kundu SC, Reis RL, editors. Microfluidics and Biosensors in Cancer Research: Applications in Cancer Modeling and Theranostics. Cham: Springer International Publishing; 2022. p. 341–68.

Chapter  Google Scholar 

Liu Y, Li S, Liu Y: Machine learning-driven multiobjective optimization: an opportunity of microfluidic platforms applied in cancer research. Cells. 2022; 11:905.

Chavez-Pineda OG, Rodriguez-Moncayo R, Cedillo-Alcantar DF, Guevara-Pantoja PE, Amador-Hernandez JU, Garcia-Cordero JL. Microfluidic systems for the analysis of blood-derived molecular biomarkers. Electrophoresis. 2022;43(16–17):1667–700.

Article  Google Scholar 

Mukhin N, Konoplev G, Oseev A, Schmidt M-P, Stepanova O, Kozyrev A, Dmitriev A, Hirsch S: Label-free protein detection by micro-acoustic biosensor coupled with electrical field sorting. Theoretical study in urine models. Sensors. 2021; 21:2555 .

Garcia-Cordero JL, Maerkl SJ. Microfluidic systems for cancer diagnostics. Curr Opin Biotechnol. 2020;65:37–44.

Article  Google Scholar 

Žvirblytė J, Mažutis L. Microfluidics for cancer biomarker discovery, research, and clinical application. In: Caballero D, Kundu SC, Reis RL, editors. Microfluidics and biosensors in cancer research: applications in cancer modeling and theranostics. Cham: Springer International Publishing; 2022. p. 499–524.

Chapter  Google Scholar 

Long NP, Jung KH, Anh NH, Yan HH, Nghi TD, Park S, Yoon SJ, Min JE, Kim HM, Lim JH et al: An integrative data mining and omics-based translational model for the identification and validation of oncogenic biomarkers of pancreatic cancer. Cancers.  2019; 11:155.

Lee H-A, Chen K-W, Hsu C-Y: Prediction model for pancreatic cancer-A population-based study from NHIRD. Cancers. 2022; 14:882.

Yokoyama S, Hamada T, Higashi M, Matsuo K, Maemura K, Kurahara H, Horinouchi M, Hiraki T, Sugimoto T, Akahane T, et al. Predicted prognosis of patients with pancreatic cancer by Machine learning. Clin Cancer Res. 2020;26(10):2411–21.

Article  Google Scholar 

Liang Y, Schott D, Zhang Y, Wang Z, Nasief H, Paulson E, Hall W, Knechtges P, Erickson B, Li XA. Auto-segmentation of pancreatic tumor in multi-parametric MRI using deep convolutional neural networks. Radiother Oncol. 2020;145:193–200.

Article  Google Scholar 

Aurna NF, Yousuf MA, Taher KA, Azad AKM, Moni MA. A classification of MRI brain tumor based on two stage feature level ensemble of deep CNN models. Comput Biol Med. 2022;146: 105539.

Article  Google Scholar 

Chen PT, Wu T, Wang P, Chang D, Liu KL, Wu MS, Roth HR, Lee PC, Liao WC, Wang W: Pancreatic cancer detection on CT Scans with deep learning: a nationwide population-based study. Radiology 2022: 10.1148/radiol.220152.

Zeineldin RA, Karar ME, Elshaer Z, Coburger J, Wirtz CR, Burgert O, Mathis-Ullrich F. Explainability of deep neural networks for MRI analysis of brain tumors. Int J Comput Assist Radiol Surg. 2022;17(9):1673–83.

Article  Google Scholar 

Faruqui N, Yousuf MA, Whaiduzzaman M, Azad AKM, Barros A, Moni MA. LungNet: A hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IoT data. Comput Biol Med. 2021;139: 104961.

Article  Google Scholar 

Dhruv P, Naskar S: Image Classification Using Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN): A Review. In: Machine Learning and Information Processing: 2020// 2020; Singapore. Springer Singapore: 367–381.

Shouman MA, El-Fiky A, Hamada S, El-Sayed A, Karar ME. Computer-assisted lung diseases detection from pediatric chest radiography using long short-term memory networks. Comput Electr Eng. 2022;103: 108402.

Article  Google Scholar 

Demir F. DeepCoroNet: A deep LSTM approach for automated detection of COVID-19 cases from chest X-ray images. Appl Soft Comput. 2021;103: 107160.

Article  Google Scholar 

Tonozuka R, Itoi T, Nagata N, Kojima H, Sofuni A, Tsuchiya T, Ishii K, Tanaka R, Nagakawa Y, Mukai S. Deep learning analysis for the detection of pancreatic cancer on endosonographic images: a pilot study. 2021;28(1):95–104.

Google Scholar 

Udriștoiu AL, Cazacu IM, Gruionu LG, Gruionu G, Iacob AV, Burtea DE, Ungureanu BS, Costache MI, Constantin A, Popescu CF, et al. Real-time computer-aided diagnosis of focal pancreatic masses from endoscopic ultrasound imaging based on a hybrid convolutional and long short-term memory neural network model. PLoS One. 2021;16(6)e0251701.

Article  Google Scholar 

Blyuss O, Zaikin A, Cherepanova V, Munblit D, Kiseleva EM, Prytomanova OM, Duffy SW, Crnogorac-Jurcevic T. Development of PancRISK, a urine biomarker-based risk score for stratified screening of pancreatic cancer patients. Br J Cancer. 2020;122(5):692–6.

Article  Google Scholar 

Alpu Ö. PEKDEMİR G: The classification capability of urine biomarkers in the diagnosis of pancreatic cancer with logistic regression based on regularized approaches: a methodological research. Turkiye Klinikleri J Biostat. 2022;14(2):118–28.

Article  Google Scholar 

Laxminarayanamma K, Krishnaiah RV, Sammulal P. Enhanced CNN model for pancreatic ductal adenocarcinoma classification based on proteomic data. Ingénierie des Systèmes d’Information. 2022;27(1):127–33.

Article  Google Scholar 

Malek S, Melgani F, Bazi Y. One-dimensional convolutional neural networks for spectroscopic signal regression. J Chemom. 2018;32(5): e2977.

Article  Google Scholar 

Van Houdt G, Mosquera C, Nápoles G. A review on the long short-term memory model. Artif Intell Rev. 2020;53(8):5929–55.

Article  Google Scholar 

Gulli A, Kapoor A, Pal S: Deep Learning with TensorFlow 2 and Keras: Regression, ConvNets, GANs, RNNs, NLP, and more with TensorFlow 2 and the Keras API, 2nd Edition: Packt Publishing; 2019.

Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Inf Process Manage. 2009;45(4):427–37.

Article  Google Scholar 

Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A review. Med Image Anal. 2019;58: 101552.

Article  Google Scholar 

Karar ME, Shouman MA, Chalopin C. Adversarial neural network classifiers for COVID-19 diagnosis in ultrasound images. Comput Mat Continua. 2022;70(1):1683–97.

Rao RV. Teaching Learning Based Optimization Algorithm: And Its Engineering Applications, 1st Edition, Cham: Springer International Publishing; 2015.

Ang KM, El-kenawy E-SM, Abdelhamid AA, Ibrahim A, Alharbi AH, Khafaga DS, Tiang SS, Lim WH: Optimal design of convolutional neural network architectures using teaching-learning-based optimization for image classification. Symmetry.  2022; 14:2323.

留言 (0)

沒有登入
gif