Miniaturizing chemistry and biology using droplets in open systems

Sun, H. et al. A suspending-droplet mode paper-based microfluidic platform for low-cost, rapid, and convenient detection of lead(II) ions in liquid solution. Biosens. Bioelectron. 99, 361–367 (2018).

Article  CAS  PubMed  Google Scholar 

Benz, M., Molla, M. R., Böser, A., Rosenfeld, A. & Levkin, P. A. Marrying chemistry with biology by combining on-chip solution-based combinatorial synthesis and cellular screening. Nat. Commun. 10, 2879 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Yu, J. et al. Reconfigurable open microfluidics for studying the spatiotemporal dynamics of paracrine signalling. Nat. Biomed. Eng. 3, 830–841 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaigala, G. V., Lovchik, R. D. & Delamarche, E. Microfluidics in the ‘open space’ for performing localized chemistry on biological interfaces. Angew. Chem. Int. Edn 51, 11224–11240 (2012).

Article  CAS  Google Scholar 

Berthier, J., Brakke, K. A. & Berthier, E. Open Microfluidics (Wiley-Scrivener, 2016).

Delamarche, E. & Kaigala, G. V. Open-Space Microfluidics: Concepts, Implementations, Applications (Wiley-VCH, 2018).

Oliveira, N. M., Vilabril, S., Oliveira, M. B., Reis, R. L. & Mano, J. F. Recent advances on open fluidic systems for biomedical applications: a review. Mater. Sci. Eng. C 97, 851–863 (2019).

Article  CAS  Google Scholar 

Berthier, E., Dostie, A. M., Lee, U. N., Berthier, J. & Theberge, A. B. Open microfluidic capillary systems. Anal. Chem. 91, 8739–8750 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berthier, J., Theberge, A. B. & Berthier, E. Open-Channel Microfluidics: Fundamentals And Applications (IOP Publishing, 2019).

Ding, Y., Howes, P. D. & deMello, A. J. Recent advances in droplet microfluidics. Anal. Chem. 92, 132–149 (2020).

Article  CAS  PubMed  Google Scholar 

Shang, L., Cheng, Y. & Zhao, Y. Emerging droplet microfluidics. Chem. Rev. 117, 7964–8040 (2017).

Article  CAS  PubMed  Google Scholar 

Soitu, C. et al. Jet-printing microfluidic devices on demand. Adv. Sci. 7, 2001854 (2020).

Article  CAS  Google Scholar 

Walsh, E. J. et al. Microfluidics with fluid walls. Nat. Commun. 8, 816 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Soitu, C. et al. Microfluidic chambers using fluid walls for cell biology. Proc. Natl Acad. Sci. USA 115, E5926–E5933 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Soitu, C. et al. Raising fluid walls around living cells. Sci. Adv. 5, eaav8002 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Feng, W., Ueda, E. & Levkin, P. A. Droplet microarrays: from surface patterning to high-throughput applications. Adv. Mater. 30, e1706111 (2018).

Article  PubMed  Google Scholar 

Cui, H. et al. Assembly of multi‐spheroid cellular architectures by programmable droplet merging. Adv. Mater. 33, 2006434 (2021).

Article  CAS  Google Scholar 

Park, D. et al. Microstructure guided multi-scale liquid patterning on an open surface. Lab Chip 18, 2013–2022 (2018).

Article  CAS  PubMed  Google Scholar 

Zhao, X. et al. Rapid generation of hybrid biochemical/mechanical cues in heterogeneous droplets for high-throughput screening of cellular responses. Lab Chip 21, 2691–2701 (2021).

Article  CAS  PubMed  Google Scholar 

Haidas, D., Napiorkowska, M., Schmitt, S. & Dittrich, P. S. Parallel sampling of nanoliter droplet arrays for noninvasive protein analysis in discrete yeast cultivations by MALDI-MS. Anal. Chem. 92, 3810–3818 (2020).

Article  CAS  PubMed  Google Scholar 

Tung, Y.-C. et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136, 473–478 (2011).

Article  CAS  PubMed  Google Scholar 

Sun, B., Zhao, Y., Wu, W., Zhao, Q. & Li, G. A superhydrophobic chip integrated with an array of medium reservoirs for long-term hanging drop spheroid culture. Acta Biomater. 135, 234–242 (2021).

Article  CAS  PubMed  Google Scholar 

Kuo, C. T. et al. Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array. Sci. Rep. 7, 4363 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Berry, S. B., Gower, M. S., Su, X., Seshadri, C. & Theberge, A. B. A modular microscale granuloma model for immune-microenvironment signaling studies in vitro. Front. Bioeng. Biotechnol. 8, 931 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Foresti, D. et al. Acoustophoretic printing. Sci. Adv. 4, eaat1659 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, J. J. et al. Droplet behavior in open biphasic microfluidics. Langmuir 34, 5358–5366 (2018).

Article  CAS  PubMed  Google Scholar 

Khor, J. W., Lee, U. N., Berthier, J., Berthier, E. & Theberge, A. B. Interfacial tension driven open droplet microfluidics. Adv. Mater. Interf. https://doi.org/10.1002/admi.202202234 (2023).

Article  Google Scholar 

Li, C. et al. Double-exclusive liquid repellency (double-ELR): an enabling technology for rare phenotype analysis. Lab Chip 18, 2710–2719 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Juang, D. S., Lang, J. M. & Beebe, D. Volumeless reagent delivery: a liquid handling method for adding reagents to microscale droplets without increasing volume. Lab Chip https://doi.org/10.1039/d1lc00906k (2022).

Article  PubMed  PubMed Central  Google Scholar 

Li, C. et al. Exclusive liquid repellency: an open multi-liquid-phase technology for rare cell culture and single-cell processing. ACS Appl. Mater. Interf. 10, 17065–17070 (2018).

Article  CAS  Google Scholar 

Li, C. et al. Social motility of biofilm-like microcolonies in a gliding bacterium. Nat. Commun. 12, 5700 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, C. et al. Under oil open-channel microfluidics empowered by exclusive liquid repellency. Sci. Adv. 6, eaay9919 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Juang, D. S. et al. Oil immersed lossless total analysis system for integrated RNA extraction and detection of SARS-CoV-2. Nat. Commun. 12, 4317 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, C. et al. Under-oil autonomously regulated oxygen microenvironments: a Goldilocks Principle-based approach for microscale cell culture. Adv. Sci. 9, e2104510 (2022).

Article  Google Scholar 

Li, A. et al. Programmable droplet manipulation by a magnetic-actuated robot. Sci. Adv. 6, eaay5808 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jebrail, M. J., Bartsch, M. S. & Patel, K. D. Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine. Lab Chip 12, 2452–2463 (2012).

Article  CAS  PubMed  Google Scholar 

Choi, K., Ng, A. H. C., Fobel, R. & Wheeler, A. R. Digital microfluidics. Annu. Rev. Anal. Chem. 5, 413–440 (2012).

Article  CAS  Google Scholar 

Li, J. & Kim, C. J. Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics. Lab Chip 20, 1705–1712 (2020).

Article  CAS  PubMed  Google Scholar 

Pang, L., Ding, J., Liu, X. X. & Fan, S. K. Digital microfluidics for cell manipulation. TrAC Trends Anal. Chem. 117, 291–299 (2019).

Article  CAS  Google Scholar 

Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

Article  CAS  PubMed  Google Scholar 

Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

Article  CAS  PubMed  Google Scholar 

Teh, S.-Y., Lin, R., Hung, L.-H. & Lee, A. P. Droplet microfluidics. Lab Chip 8, 198–220 (2008).

Article  CAS 

留言 (0)

沒有登入
gif