Targeting the human gut microbiome with small-molecule inhibitors

Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

Article  CAS  Google Scholar 

Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2018).

Article  PubMed  Google Scholar 

Caruso, R., Lo, B. C. & Núñez, G. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 20, 411–426 (2020).

Article  CAS  PubMed  Google Scholar 

Wong, S. H. & Yu, J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16, 690–704 (2019).

Article  CAS  PubMed  Google Scholar 

Jia, B., Han, X., Kim, K. H. & Jeon, C. O. Discovery and mining of enzymes from the human gut microbiome. Trends Biotechnol. 40, 240–254 (2022).

Article  CAS  PubMed  Google Scholar 

Oremland, R. S. & Capone, D. G. Use of ‘specific’ inhibitors in biogeochemistry and microbial ecology. In Advances in Microbial Ecology (ed. Marshall, K. C.) 285–383 (Springer, 1988).

Walker, A. W., Duncan, S. H., Louis, P. & Flint, H. J. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol. 22, 267–274 (2014).

Article  CAS  PubMed  Google Scholar 

Stewart, E. J. Growing unculturable bacteria. J. Bacteriol. 194, 4151–4160 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goodman, A. L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289 (2010).

Article  Google Scholar 

Jia, W., Li, H., Zhao, L. & Nicholson, J. K. Gut microbiota: a potential new territory for drug targeting. Nat. Rev. Drug. Discov. 7, 123–129 (2008).

Article  CAS  PubMed  Google Scholar 

Holmes, E. et al. Therapeutic modulation of microbiota–host metabolic interactions. Sci. Transl. Med. 4, 137rv6 (2012).

Article  PubMed  Google Scholar 

Lemon, K. P., Armitage, G. C., Relman, D. A. & Fischbach, M. A. Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med. 4, 137rv5 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Schwartz, D. J., Langdon, A. E. & Dantas, G. Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med. 12, 82 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Ramirez, J. et al. Antibiotics as major disruptors of gut microbiota. Front. Cell. Infect. Microbiol. 10, 572912 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elvers, K. T. et al. Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: a systematic review. BMJ Open. 10, e035677 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Burstein, D. et al. New CRISPR–Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).

Article  CAS  PubMed  Google Scholar 

Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Munck, C., Sheth, R. U., Freedberg, D. E. & Wang, H. H. Recording mobile DNA in the gut microbiota using an Escherichia coli CRISPR–Cas spacer acquisition platform. Nat. Commun. 11, 95 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gibson, G. R. & Roberfroid, M. B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412 (1995).

Article  CAS  PubMed  Google Scholar 

Monteagudo-Mera, A. et al. High purity galacto-oligosaccharides enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome. Benef. Microbes 7, 247–264 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azcarate-Peril, M. A. et al. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc. Natl Acad. Sci. 114, E367–E375 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kearney, S. M., Gibbons, S. M., Erdman, S. E. & Alm, E. J. Orthogonal dietary niche enables reversible engraftment of a gut bacterial commensal. Cell Rep. 24, 1842–1851 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shepherd, E. S., Deloache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol. 66, 365–378 (1989).

Article  CAS  PubMed  Google Scholar 

Sperti, G. S. Probiotics (Avi Publishing Company, 1971).

Dinleyici, E. C., Eren, M., Ozen, M., Yargic, Z. A. & Vandenplas, Y. Effectiveness and safety of Saccharomyces boulardii for acute infectious diarrhea. Expert. Opin. Biol. Ther. 12, 395–410 (2012).

Article  CAS  PubMed  Google Scholar 

Na, X. & Kelly, C. Probiotics in Clostridium difficile infection. J. Clin. Gastroenterol. 45, S154–S158 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Sánchez, B. et al. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 61, 1600240 (2017).

Article  Google Scholar 

Gibson, G. R. & Wang, X. Inhibitory effects of bifidobacteria on other colonic bacteria. J. Appl. Bacteriol. 77, 412–420 (1994).

Article  CAS  PubMed  Google Scholar 

Hansen, R. Bifidobacteria have come to Denmark to stay. N. Eur. Dairy. J. 51, 79–83 (1985).

Google Scholar 

Nishizawa, Y. Physiological activity of bifidobacteria. Shonika Shinryo 23, 1213–1218 (1960).

Google Scholar 

Mizutani, T. & Mitsuoka, T. Inhibitory effect of some intestinal bacteria on liver tumorigenesis in gnotobiotic C3H/HE male mice. Cancer Lett. 11, 89–95 (1980).

Article  CAS  PubMed  Google Scholar 

Howarth, G. S. & Wang, H. Role of endogenous microbiota, probiotics and their biological products in human health. Nutrients 5, 58–81 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grangette, C. et al. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc. Natl Acad. Sci. 102, 10321–10326 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones, M. L., Chen, H., Ouyang, W., Metz, T. & Prakash, S. Microencapsulated genetically engineered Lactobacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol. J. Biomed. Biotechnol. 2004, 61–69 (2004).

Article  PubMed  PubMed Central  Google Scholar 

Carroll, I. M. et al. Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G729–G738 (2007).

Article  CAS  PubMed  Google Scholar 

Palmer, J. D. et al. Engineered probiotic for the inhibition of Salmonella via tetrathionate-induced production of microcin H47. ACS Infect. Dis. 4, 39–45 (2018).

Article  CAS  PubMed  Google Scholar 

Dosoky, N. S., Guo, L., Chen, Z., Feigley, A. V. & Davies, S. S. Dietary fatty acids control the species of N-acyl-phosphatidylethanolamines synthesized by therapeutically modified bacteria in the intestinal tract. ACS Infect. Dis. 4, 3–13 (2018).

Article  CAS  PubMed  Google Scholar 

Bouhnik, Y. et al. Fecal recovery in humans of viable Bifidobacterium sp. ingested in fermented milk. Gastroenterology 102, 875–878 (1992).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif