Large-scale F0 CRISPR screens in vivo using MIC-Drop

Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9, 1911 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

Article  PubMed  Google Scholar 

Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR–Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Prim. 2, 8 (2022).

Article  CAS  Google Scholar 

Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feldman, D. et al. Pooled genetic perturbation screens with image-based phenotypes. Nat. Protoc. 17, 476–512 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jost, M. & Weissman, J. S. CRISPR approaches to small molecule target identification. ACS Chem. Biol. 13, 366–375 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neggers, J. E. et al. Target identification of small molecules using large-scale CRISPR-Cas mutagenesis scanning of essential genes. Nat. Commun. 9, 502 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Kuhn, M., Santinha, A. J. & Platt, R. J. Moving from in vitro to in vivo CRISPR screens. Gene Genome Ed. 2, 100008 (2021).

Article  CAS  Google Scholar 

Shin, U. et al. Large-scale generation and phenotypic characterization of zebrafish CRISPR mutants of DNA repair genes. DNA Repair 107, 103173 (2021).

Article  CAS  PubMed  Google Scholar 

Pei, W. et al. Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues. NPJ Regen. Med. 3, 11 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Varshney, G. K. et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res. 25, 1030–1042 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Varshney, G. K. et al. A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish. Nat. Protoc. 11, 2357–2375 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thyme, S. B. et al. Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions. Cell 177, 478–491.e20 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, Y. et al. Systematic genome editing of the genes on zebrafish Chromosome 1 by CRISPR/Cas9. Genome Res. 30, 118–126 (2019).

Article  PubMed  Google Scholar 

Keatinge, M. et al. CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury. PLOS Genet. 17, e1009515 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parvez, S. et al. MIC-Drop: a platform for large-scale in vivo CRISPR screens. Science 373, 1146–1151 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patton, E. E. & Zon, L. I. The art and design of genetic screens: zebrafish. Nat. Rev. Genet. 2, 956–966 (2001).

Article  CAS  PubMed  Google Scholar 

Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

Article  CAS  PubMed  Google Scholar 

Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

Article  CAS  PubMed  Google Scholar 

Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

Article  CAS  PubMed  Google Scholar 

Eisen, J. S. Zebrafish make a big splash. Cell 87, 969–977 (1996).

Article  CAS  PubMed  Google Scholar 

Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

Article  CAS  PubMed  Google Scholar 

Gemberling, M., Bailey, T. J., Hyde, D. R. & Poss, K. D. The zebrafish as a model for complex tissue regeneration. Trends Genet. 29, 611–620 (2013).

Article  CAS  PubMed  Google Scholar 

Marques, I. J., Lupi, E. & Mercader, N. Model systems for regeneration: zebrafish. Development 146, dev167692 (2019).

Article  CAS  PubMed  Google Scholar 

Meshalkina, D. A. et al. Understanding zebrafish cognition. Behav. Process. 141, 229–241 (2017).

Article  Google Scholar 

Gerlai, R. Evolutionary conservation, translational relevance and cognitive function: the future of zebrafish in behavioral neuroscience. Neurosci. Biobehav. Rev. 116, 426–435 (2020).

Article  PubMed  Google Scholar 

Kalueff, A. V. et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10, 70–86 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Geng, Y. & Peterson, R. T. The zebrafish subcortical social brain as a model for studying social behavior disorders. Dis. Model. Mech. 12, dmm039446 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Bahl, A. & Engert, F. Neural circuits for evidence accumulation and decision making in larval zebrafish. Nat. Neurosci. 23, 94–102 (2020).

Article  CAS  PubMed  Google Scholar 

Nelson, J. C. & Granato, M. Zebrafish behavior as a gateway to nervous system assembly and plasticity. Development 149, dev177998 (2022).

Article  CAS  PubMed  Google Scholar 

McConnell, A. M., Noonan, H. R. & Zon, L. I. Reeling in the zebrafish cancer models. Annu. Rev. Cancer Biol. 5, 331–350 (2021).

Article  Google Scholar 

White, R., Rose, K. & Zon, L. Zebrafish cancer: the state of the art and the path forward. Nat. Rev. Cancer 13, 624–636 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, T. & Peterson, R. T. Modeling lysosomal storage diseases in the zebrafish. Front. Mol. Biosci. 7, 82 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campbell, P. D. & Granato, M. Zebrafish as a tool to study schizophrenia-associated copy number variants. Dis. Model. Mech. 13, dmm043877 (2020).

留言 (0)

沒有登入
gif