In vitro, in vivo, and in silico analysis of synbiotics as preventive interventions for lipid metabolism in ethanol-induced adipose tissue injury

French SW, Nash J, Shitabata P, Kachi K, Hara C, Chedid A, et al. Pathology of alcoholic liver disease. Semin Liver Dis. © 1993 by Thieme Medical Publishers, Inc.; 1993;13:154–69. Available from: http://www.thieme-connect.com/products/ejournals/html/10.1055/s-2007-1007346. [cited 2022 Aug 4].

Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet. Elsevier; 2009;373:2223–33. Available from: http://www.thelancet.com/article/S0140673609607467/fulltext. [cited 2022 Aug 2].

Gao B, Bataller R. Alcoholic liver disease: Pathogenesis and new therapeutic targets. Gastroenterology. W.B. Saunders; 2011. p. 1572–85. Available from: https://pubmed.ncbi.nlm.nih.gov/21920463/. [cited 2021 Jan 8].

Rehm J, Samokhvalov A V., Shield KD. Global burden of alcoholic liver diseases. J Hepatol. Elsevier; 2013;59:160–8. Available from: http://www.journal-of-hepatology.eu/article/S0168827813001840/fulltext. [cited 2022 Aug 2].

Rao P, Midde N, Miller D, Chauhan S, Kumar A, Kumar S. Diallyl sulfide: potential use in novel therapeutic interventions in alcohol, drugs, and disease mediated cellular toxicity by Targeting Cytochrome P450 2E1. Curr Drug Metab. Bentham Science Publishers Ltd.; 2015;16:486–503. Available from: https://pubmed.ncbi.nlm.nih.gov/26264202/. [cited 2021 Jan 8].

Novak RF, Woodcroft KJ. The alcohol-inducible form of cytochrome P450 (CYP 2E1): role in toxicology and regulation of expression. Arch Pharm Res. Pharmaceutical Society of Korea; 2000;23:267–82. Available from: https://pubmed.ncbi.nlm.nih.gov/10976571/. [cited 2021 Jan 8].

Patel F, Parwani K, Patel D, Mandal P. Metformin and probiotics interplay in amelioration of ethanol-induced oxidative stress and inflammatory response in an in vitro and in vivo model of hepatic injury. Mediators Inflamm. Hindawi Limited; 2021;2021. Available from: https://pubmed.ncbi.nlm.nih.gov/33953643/. [cited 2021 May 31].

Kema VH, Mojerla NR, Khan I, Mandal P. Effect of alcohol on adipose tissue: a review on ethanol mediated adipose tissue injury. Adipocyte. Taylor and Francis Inc.; 2015. p. 225–31. Available from: https://pubmed.ncbi.nlm.nih.gov/26451277/. [cited 2021 Jan 8].

Kang, L., et al., 2007a. Chronic ethanol and triglyceride turnover in white adipose tissue in rats: inhibition of the anti-lipolytic action of insulin after chronic ethanol contributes to increased triglyceride degradation. Journal of Biological Chemistry, 282, 28465–28473. - Google Search. [cited 2021 Jan 8].

Chen X, Sebastian BM, Nagy LE. Chronic ethanol feeding to rats decreases adiponectin secretion by subcutaneous adipocytes. Am J Physiol Endocrinol Metab. 2007;292(2):E621–8. https://doi.org/10.1152/ajpendo.00387.2006, https://pubmed.ncbi.nlm.nih.gov/17047161/.

Article  CAS  PubMed  Google Scholar 

Sebastian, B.M., et al., 2011. Identification of a cytochrome P4502E1/Bid/ C1q-dependent axis mediating inflammation in adipose tissue after chronic ethanol feeding to mice. The Journal of Biological Chemistry, 286 (41), 35989–35997. - Google Search. [cited 2021 Jan 8].

Patel D, Mandal P. Effect of Alcohol on Gut-Liver Axis and Adipose Tissue. Adipose Tissue - An Updat. IntechOpen; 2019. Available from: www.intechopen.com. [cited 2021 Jan 8].

Patel D, Sharma D, Mandal P. Gut microbiota: target for modulation of gut-liver-adipose tissue axis in ethanol-induced liver disease. Mediators Inflamm. 2022;2022:4230599 Hindawi Limited.

Article  PubMed  PubMed Central  Google Scholar 

You M, Fischer M, Deeg MA, Crabb DW. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem J Biol Chem; 2002;277:29342–7. Available from: https://pubmed.ncbi.nlm.nih.gov/12036955/. [cited 2022 Aug 2].

Ji C, Chan C, Kaplowitz N. Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model. J Hepatol. J Hepatol; 2006;45:717–24. Available from: https://pubmed.ncbi.nlm.nih.gov/16879892/. [cited 2022 Aug 2].

You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology. Gastroenterology; 2004;127:1798–808. Available from: https://pubmed.ncbi.nlm.nih.gov/15578517/. [cited 2022 Aug 2].

Fischer M, You M, Matsumoto M, Crabb DW. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice. J Biol Chem. J Biol Chem; 2003;278:27997–8004. Available from: https://pubmed.ncbi.nlm.nih.gov/12791698/. [cited 2022 Aug 2].

Hart CL, Morrison DS, Batty GD, Mitchell RJ, Smith GD. Effect of body mass index and alcohol consumption on liver disease: Analysis of data from two prospective cohort studies. BMJ. BMJ; 2010;340:634. Available from: https://pubmed.ncbi.nlm.nih.gov/20223873/. [cited 2021 Jan 8].

Tsai J, Ford ES, Zhao G, Li C, Greenlund KJ, Croft JB. Co-occurrence of obesity and patterns of alcohol use associated with elevated serum hepatic enzymes in US adults. J Behav Med. J Behav Med; 2012;35:200–10. Available from: https://pubmed.ncbi.nlm.nih.gov/21626151/. [cited 2022 Aug 2].

Loomba R, Bettencourt R, Barrett-Connor E. Synergistic association between alcohol intake and body mass index with serum alanine and aspartate aminotransferase levels in older adults: the rancho bernardo study. Aliment Pharmacol Ther. Aliment Pharmacol Ther; 2009;30:1137–49. Available from: https://pubmed.ncbi.nlm.nih.gov/19737152/. [cited 2021 Jan 8].

Shen Z, Li Y, Yu C, Shen Y, Xu L, Xu C, et al. A cohort study of the effect of alcohol consumption and obesity on serum liver enzyme levels. Eur J Gastroenterol Hepatol. Lippincott Williams and Wilkins; 2010;22:820–5. Available from: https://pubmed.ncbi.nlm.nih.gov/19829121/. [cited 2021 Jan 8].

Sebastian BM, Roychowdhury S, Tang H, Hillian AD, Feldstein AE, Stahl GL, et al. Identification of a cytochrome P4502E1/Bid/C1q-dependent axis mediating inflammation in adipose tissue after chronic ethanol feeding to mice. J Biol Chem. J Biol Chem; 2011;286:35989–97. Available from: https://pubmed.ncbi.nlm.nih.gov/21856753/. [cited 2022 Aug 2].

Song Z, Zhou Z, Deaciuc I, Chen T, McClain CJ. Inhibition of adiponectin production by homocysteine: a potential mechanism for alcoholic liver disease. Hepatology. 2008;47:867–79.

Article  CAS  PubMed  Google Scholar 

Kang L, Chen X, Sebastian BM, Pratt BT, Bederman IR, Alexander JC, et al. Chronic ethanol and triglyceride turnover in white adipose tissue in rats: Inhibition of the anti-lipolytic action of insulin after chronic ethanol contributes to increased triglyceride degradation. J Biol Chem. J Biol Chem; 2007;282:28465–73. Available from: https://pubmed.ncbi.nlm.nih.gov/17686776/. [cited 2020 Sep 21].

Tang H, Sebastian BM, Axhemi A, Chen X, Hillian AD, Jacobsen DW, et al. Ethanol-Induced Oxidative Stress via the CYP2E1 Pathway Disrupts Adiponectin Secretion from Adipocytes. Alcohol Clin Exp Res. Alcohol Clin Exp Res; 2012;36:214–22. Available from: https://pubmed.ncbi.nlm.nih.gov/21895711/. [cited 2020 Sep 21].

Zhong W, Zhao Y, Tang Y, Wei X, Shi X, Sun W, et al. Chronic alcohol exposure stimulates adipose tissue lipolysis in mice: role of reverse triglyceride transport in the pathogenesis of alcoholic steatosis. Am J Pathol. Am J Pathol; 2012;180:998–1007. Available from: https://pubmed.ncbi.nlm.nih.gov/22234172/. [cited 2022 Aug 2].

Xu J, Lai KKY, Verlinsky A, Lugea A, French SW, Cooper MP, et al. Synergistic steatohepatitis by moderate obesity and alcohol in mice despite increased adiponectin and p-AMPK. J Hepatol. J Hepatol; 2011;55:673–82. Available from: https://pubmed.ncbi.nlm.nih.gov/21256905/. [cited 2022 Aug 2].

Parlesak A, Schäfer C, Schütz T, Bode JC, Bode C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J Hepatol. Blackwell Munksgaard; 2000;32:742–7. Available from: https://pubmed.ncbi.nlm.nih.gov/10845660/. [cited 2020 Dec 15].

Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB, Monteith P, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. Elsevier; 2014;60:940–7. Available from: https://pubmed.ncbi.nlm.nih.gov/24374295/. [cited 2021 Jan 8].

Yan AW, Fouts DE, Brandl J, Stärkel P, Torralba M, Schott E, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 2011;53:96–105.

Article  CAS  PubMed  Google Scholar 

Bull-Otterson L, Feng W, Kirpich I, Wang Y, Qin X, Liu Y, et al. Metagenomic Analyses of Alcohol Induced Pathogenic Alterations in the Intestinal Microbiome and the Effect of Lactobacillus rhamnosus GG Treatment. PLoS One. PLoS One; 2013;8. Available from: https://pubmed.ncbi.nlm.nih.gov/23326376/. [cited 2020 Sep 21].

Leclercq S, De Saeger C, Delzenne N, De Timary P, Stärkel P. Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependenc. Biol Psychiatry Elsevier USA. 2014;76:725–33.

Article  CAS  Google Scholar 

Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. Hepatology; 2011;54:562–72. Available from: https://pubmed.ncbi.nlm.nih.gov/21574172/. [cited 2022 May 9].

Slizewska K, Kapusniak J, Barczynska R, Jochym K. Resistant Dextrins as Prebiotic. Carbohydrates - Compr Stud Glycobiol Glycotechnol. InTech; 2012. https://doi.org/10.5772/51573. [cited 2021 Jan 8].

Nutrition Division. Health and nutritional properties and guidelines for evaluation - Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with lactic acid bacteria . FAO/WHO; 2006. p. 56. Available from: http://www.fao.org/publications/card/en/c/7c102d95-2fd5-5b22-8faf-f0b2e68dfbb6/. [cited 2021 Jan 9].

Tomás MSJ, Claudia Otero M, Ocaña V, Elena Nader-Macías M. Production of antimicrobial substances by lactic acid bacteria I: determination of hydrogen peroxide. Methods Mol Biol. Humana Press; 2004;268:337–46. Available from: https://link.springer.com/protocol/10.1385/1-59259-766-1:337. [cited 2021 Jan 8].

Turroni F, Ventura M, Buttó LF, Duranti S, O’Toole PW, Motherway MOC, et al. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci. 2014;71(2):183–203.

Article  CAS  PubMed  Google Scholar 

Parvez S, Malik KA, Ah Kang S, Kim HY. Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 2006;100(6):1171–85.

Article  CAS  PubMed  Google Scholar 

Rioux KP, Madsen KL, Fedorak RN. The role of enteric microflora in inflammatory bowel disease: Human and animal studies with probiotics and prebiotics. Gastroenterol Clin North Am. Gastroenterol Clin North Am; 2005. p. 465–82. Available from: https://pubmed.ncbi.nlm.nih.gov/16084308/. [cited 2021 Jan 8].

Sun X, Tang Y, Tan X, Li Q, Zhong W, Sun X, et al. Activation of peroxisome proliferator-activated receptor-γ by rosiglitazone improves lipid homeostasis at the adipose tissue-liver axis in ethanol-fed mice. Am J Physiol - Gastrointest Liver Physiol. Am J Physiol Gastrointest Liver Physiol;2012;302. Available from: https://pubmed.ncbi.nlm.nih.gov/22173916/. [cited 2020 Sep 21].

Saberi B, Dadabhai AS, Jang YY, Gurakar A, Mezey E. Current management of alcoholic hepatitis and future therapies. J Clin Transl Hepatol. 2016;4(2):113–22 Xia and He Publishing Inc.

PubMed  PubMed Central  Google Scholar 

Mutlu E, Keshavarzian A, Engen P, Forsyth CB, Sikaroodi M, Gillevet P. Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res. Alcohol Clin Exp Res; 2009;33:1836–46. Available from: https://pubmed.ncbi.nlm.nih.gov/19645728/. [cited 2022 May 8].

Forsyth CB, Farhadi A, Jakate SM, Tang Y, Shaikh M, Keshavarzian A. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol. NIH Public Access; 2009;43:163–72. Available from: /pmc/articles/PMC2675276/?report=abstract. [cited 2021 Jan 8].

Parwani K, Mandal P. Role of advanced glycation end products and insulin resistance in diabetic nephropathy. Arch Physiol Biochem. Taylor and Francis Ltd; 2020;1–13. Available from: https://www.tandfonline.com/doi/full/https://doi.org/10.1080/13813455.2020.1797106. [cited 2020 Sep 21].

Kema VH, Khan I, Kapur S, Mandal P. Evaluating the effect of diallyl sulfide on regulation of inflammatory mRNA expression in 3T3L1 adipocytes and RAW 264.7 macrophages during ethanol treatment. Drug Chem Toxicol. Taylor and Francis Ltd; 2018;41:302–13. Available from: https://pubmed.ncbi.nlm.nih.gov/29319385/. [cited 2021 May 31].

Matsumoto H, Matsubayashi K, Fukui Y. Evidence that cytochrome P-4502E1 contributes to ethanol elimination at low doses: Effects of diallyl sulfide and 4-methyl pyrazole on ethanol elimination in the perfused rat liver. Alcohol Clin Exp Res. 1996;20(1 Suppl):12A-16A Lippincott Williams and Wilkins.

Article  CAS  PubMed  Google Scholar 

Iciek M, Kwiecień I, Włodek L. Biological properties of garlic and garlic-derived organosulfur compounds. Environ Mol Mutagen. 2009;50(3):247–65.

Article  CAS  PubMed  Google Scholar 

Kema VH, Khan I, Jamal R, Vishwakarma SK, Lakki Reddy C, Parwani K, et al. Protective Effects of Diallyl Sulfide Against Ethanol-Induced Injury in Rat Adipose Tissue and Primary Human Adipocytes. Alcohol Clin Exp Res. Blackwell Publishing Ltd; 2017;41:1078–92. Available from: http://doi.wiley.com/10.1111/acer.13398. [cited 2021 Jan 13].

Morimoto M, Hagbjörk A-L, Wan Y-JY, Fu PC, Clot P, Albano E, et al. Modulation of experimental alcohol-induced liver disease by cytochrome P450 2E1 inhibitors. Hepatology. 1995;21:1610–7.

CAS  PubMed  Google Scholar 

Liu LG, Yan H, Yao P, Zhang W, Zou LJ, Song FF, et al. CYP2E1-dependent hepatotoxicity and oxidative damage after ethanol administration in human primary hepatocytes. World J Gastroenterol WJG Press. 2005;11:4530–5.

Article  CAS  Google Scholar 

Bardag-Gorce F, French BA, Nan L, Song H, Nguyen SK, Yong H, et al. CYP2E1 induced by ethanol causes oxidative stress, proteasome inhibition and cytokeratin aggresome (Mallory body-like) formation. Exp Mol Pathol. 2006;81:191–201.

Article  CAS  PubMed  Google Scholar 

Kim MJ, Nepal S, Lee ES, Jeong TC, Kim SH, Park PH. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages. Toxicol Appl Pharmacol. Toxicol Appl Pharmacol; 2013;273:77–89. Available from: https://pubmed.ncbi.nlm.nih.gov/23978445/. [cited 2020 Sep 21].

Miki S, Inokuma KI, Takashima M, Nishida M, Sasaki Y, Ushijima M, et al. Aged garlic extract suppresses the increase of plasma glycated albumin level and enhances the AMP-activated protein kinase in adipose tissue in TSOD mice. Mol Nutr Food Res. Wiley-VCH Verlag; 2017;61. Available from: https://pubmed.ncbi.nlm.nih.gov/28074608/. [cited 2021 Jul 11].

Shang A, Cao S-Y, Xu X-Y, Gan R-Y, Tang G-Y, Corke H, et al. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods. MDPI Multidisciplinary Digital Publishing Institute; 2019;8:246. Available from: https://www.mdpi.com/2304-8158/8/7/246. [cited 2021 Apr 2].

Murray MT, Nowicki J. Allium sativum (Garlic). In Textbook of Natural Medicine. Elsevier; 2020. p. 414–420.e3. https://www.sciencedirect.com/science/article/pii/B9780323430449000510?via%3Dihub.

Matsutomo T, Kodera Y. Development of an analytic method for sulfur compounds in aged garlic extract with the use of a postcolumn high performance liquid chromatography method with sulfur-specific detection. J Nutr. American Society for Nutrition; 2016;146:450S-455S. Available from: https://pubmed.ncbi.nlm.nih.gov/26764330/. [cited 2021 Jan 8].

Arreola R, Quintero-Fabián S, López-Roa R, Flores-Gutiérrez E, Reyes-Grajeda J, Carrera-Quintanar L, et al. Immunomodulation and Anti-Inflammatory Effects of Garlic Compounds.: Discovery Service for Endeavour College of Natural Health Library. J Immunol Res. 2015;2015:1–13. Available from: http://www.proquest.com/

Jung YM, Lee SH, Lee DS, You MJ, Chung IK, Cheon WH, et al. Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects. Nutr Res. 2011;31:387–96.

Article  CAS  PubMed  Google Scholar 

Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinforma. John Wiley & Sons, Ltd; 2016;54:1.30.1–1.30.33. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/cpbi.5. [cited 2023 Feb 26].

Patel D, Desai C, Singh D, Soppina V, Parwani K, Patel F, et al. Synbiotic Intervention Ameliorates Oxidative Stress and Gut Permeability in an In Vitro and In Vivo Model of Ethanol-Induced Intestinal Dysbiosis. Biomed 2022, Vol 10, Page 3285. Multidisciplinary Digital Publishing Institute; 2022;10:3285. Available from: https://www.mdpi.com/2227-9059/10/12/3285/htm. [cited 2022 Dec 19].

Kuri-Harcuch W, Green H. Adipose conversion of 3T3 cells depends on a serum factor. Proc Natl Acad Sci U S A. Proc Natl Acad Sci U S A; 1978 [cited 2021 Jan 8];75:6107–9. Available from: https://pubmed.ncbi.nlm.nih.gov/282628/.

Ramírez-Zacarías JL, Castro-Muñozledo F, Kuri-Harcuch W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O. Histochemistry Springer-Verlag. 1992;97:493–7.

Article  Google Scholar 

Jiang Z Bin, Gao J, Chai YH, Li W, Luo YF, Chen YZ. Astragaloside alleviates alcoholic fatty liver disease by suppressing oxidative stress. Kaohsiung J Med Sci. John Wiley & Sons, Ltd; 2021;37:718–29. Available from: https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/kjm2.12390. [cited 2023 Feb 26].

Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. Oxford University Press; 2020;48:D845–55. Available from: https://pubmed.ncbi.nlm.nih.gov/31680165/. [cited 2021 Jun 5].

Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X, et al. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res Oxford University Press. 2017;45:W356–60.

Article  CAS  Google Scholar 

Szklarczyk D, Gable A, Lyon D, … AJ-N acids, 2019 undefined. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. academic.oup.com. Available from: https://academic.oup.com/nar/article-abstract/47/D1/D607/5198476. [cited 2023 Feb 26].

Morris GM, Ruth H, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J Comput Chem. NIH Public Access; 2009;30:2785. Available from: /pmc/articles/PMC2760638/. [cited 2023 Feb 26].

Steiner JL, Lang CH. Alcohol, adipose tissue and lipid dysregulation. Biomolecules. MDPI AG; 2017. Available from: https://pubmed.ncbi.nlm.nih.gov/28212318/. [cited 2020 Sep 21].

Nicolás JM, Fernández-Solà J, Fatjó F, Casamitjana R, Bataller R, Sacanella E, et al. Increased circulating leptin levels in chronic alcoholism. Alcohol Clin Exp Res. 2001;25:83–8 (Blackwell Publishing Ltd).

Article  PubMed  Google Scholar 

Hajer GR, Van Haeften TW, Visseren FLJ. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J. Eur Heart J; 2008. p. 2959–71. Available from: https://pubmed.ncbi.nlm.nih.gov/18775919/. [cited 2020 Sep 21].

Yu HC, Li SY, Cao MF, Jiang XY, Feng L, Zhao JJ, et al. Effects of chronic ethanol consumption on levels of adipokines in visceral adipose tissues and sera of rats. Acta Pharmacol Sin. 2010;31:461–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren RZ, Zhang X, Xu J, Zhang HQ, Yu CX, Cao MF, et al. Chronic ethanol consumption increases the levels of chemerin in the serum and adipose tissue of humans and rats. Acta Pharmacol Sin. 2012;33:652–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuzmich NN, Sivak K V., Chubarev VN, Porozov YB, Savateeva-Lyubimova TN, Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines. MDPI AG; 2017. Available from: /pmc/articles/PMC5748601/?report=abstract. [cited 2021 Jan 8].

Mathurin P, O’Grady J, Carithers RL, Phillips M, Louvet A, Mendenhall CL, et al. Corticosteroids improve short-term survival in patients with severe alcoholic hepatitis: Meta-analysis of individual patient data. Gut. Gut; 2011;60:255–60. Available from: https://pubmed.ncbi.nlm.nih.gov/20940288/. [cited 2021 Jan 8].

Guerrero Hernández I, Torre Delgadillo A, Vargas Vorackova F, Uribe M, Torre Delgadillo Instituto Nacional de Ciencias Médicas Nutrición A, Zubirán México Vasco de Quiroga Núm SD, et al. Intestinal flora, probiotics, and cirrhosis. Ann Hepatol. 2008. Available from: www.medigraphic.com.

Dong Y, Duan L, Chen HW, Liu YM, Zhang Y, Wang J. Network pharmacology-based prediction and verification of the targets and mechanism for panax notoginseng saponins against coronary heart disease. Evid Based Complement Alternat Med. 2019;2019:6503752.

Article  PubMed 

留言 (0)

沒有登入
gif