Computational insights into ligand–induced G protein and β-arrestin signaling of the dopamine D1 receptor

Santos R, Ursu O, Gaulton A et al (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34. https://doi.org/10.1038/nrd.2016.230

Article  CAS  PubMed  Google Scholar 

Latorraca NR, Venkatakrishnan AJ, Dror RO (2017) GPCR dynamics: structures in motion. Chem Rev 117:139–155. https://doi.org/10.1021/acs.chemrev.6b00177

Article  CAS  PubMed  Google Scholar 

Tan L, Yan W, McCorvy JD, Cheng J (2018) Biased ligands of g protein-coupled receptors (GPCRs): structure-functional selectivity relationships (SFSRs) and therapeutic potential. J Med Chem 61:9841–9878. https://doi.org/10.1021/acs.jmedchem.8b00435

Article  CAS  PubMed  Google Scholar 

Harris SS, Urs NM (2021) Targeting β-Arrestins in the Treatment of psychiatric and neurological disorders. CNS Drugs 35:253–264. https://doi.org/10.1007/s40263-021-00796-y

Article  CAS  PubMed  Google Scholar 

Beaulieu J-M, Espinoza S, Gainetdinov RR (2015) Dopamine receptors – IUPHAR Review 13. Br J Pharmacol 172:1–23. https://doi.org/10.1111/bph.12906

Article  CAS  PubMed  Google Scholar 

Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217. https://doi.org/10.1124/pr.110.002642

Article  CAS  PubMed  Google Scholar 

Klein MO, Battagello DS, Cardoso AR et al (2019) Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 39:31–59. https://doi.org/10.1007/s10571-018-0632-3

Article  PubMed  Google Scholar 

Felsing DE, Jain MK, Allen JA (2019) Advances in dopamine D1 receptor ligands for neurotherapeutics. Curr Top Med Chem 19:1365–1380. https://doi.org/10.2174/1568026619666190712210903

Article  CAS  PubMed  Google Scholar 

Zhang A, Neumeyer JL, Baldessarini RJ (2007) Recent progress in development of dopamine receptor subtype-selective agents: potential therapeutics for neurological and psychiatric disorders. Chem Rev 107:274–302. https://doi.org/10.1021/cr050263h

Article  CAS  PubMed  Google Scholar 

Porras G, Berthet A, Dehay B et al (2012) PSD-95 expression controls l-DOPA dyskinesia through dopamine D1 receptor trafficking. J Clin Invest 122:3977–3989. https://doi.org/10.1172/JCI59426

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rascol O, Nutt JG, Blin O et al (2001) Induction by dopamine D1 receptor agonist ABT-431 of dyskinesia similar to levodopa in patients with parkinson disease. Arch Neurol 58:249–254. https://doi.org/10.1001/archneur.58.2.249

Article  CAS  PubMed  Google Scholar 

Delfino MA, Stefano AV, Ferrario JE et al (2004) Behavioral sensitization to different dopamine agonists in a parkinsonian rodent model of drug-induced dyskinesias. Behav Brain Res 152:297–306. https://doi.org/10.1016/j.bbr.2003.10.009

Article  CAS  PubMed  Google Scholar 

Urs NM, Bido S, Peterson SM et al (2015) Targeting β-arrestin2 in the treatment of l-DOPA–induced dyskinesia in Parkinson’s disease. PNAS 112:E2517–E2526. https://doi.org/10.1073/pnas.1502740112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gray DL, Allen JA, Mente S et al (2018) Impaired β-arrestin recruitment and reduced desensitization by non-catechol agonists of the D1 dopamine receptor. Nat Commun 9:1–17. https://doi.org/10.1038/s41467-017-02776-7

Article  CAS  Google Scholar 

Davoren JE, Nason D, Coe J et al (2018) Discovery and lead optimization of atropisomer D1 agonists with reduced desensitization. J Med Chem 61:11384–11397. https://doi.org/10.1021/acs.jmedchem.8b01622

Article  CAS  PubMed  Google Scholar 

DAVOREN JE, Dounay AB, EFREMOV IV et al (2014) Heteroaromatic compounds as dopamine d1 ligands. WO 2014/072882 A1

Gray DLF, Zhang L, Davoren JE et al (2015) Heteroaromatic compounds and their use as dopamine d1 ligands. WO 2015/162515 A1

Brodney MA, Davoren JE, Dounay AB et al (2014) Heteroaromatic compounds and their use as dopamine d1 ligands. WO 2014/207601 A1.

Coe JW, ALLEN JA, Davoren JE et al (2014) Heteroaromatic compounds and their use as dopamine d1 ligands. WO 2014/072881 A1.

Gray DLF, Zhang L, Brodney MA et al (2015) Heteroaromatic compounds and their use as dopamine d1 ligands. WO 2015/162516 A1.

Davoren JE, Dounay AB, Efremov IV et al (2015) Heteroaromatic compounds and their use as dopamine d1 ligands. WO 2015/162518 A1.

Brodney MA, Davoren JE, Efremov IV et al (2015) Heterocyclic compounds and their use as dopamine d1 ligands. WO 2015/166366 A1.

Gray DLF, Davoren JE, Dounay AB et al (2015) Heteroaromatic compounds and their use as dopamine d1 ligands. WO 2015/166370 A1.

Conroy JL, Free RB, Sibley DR (2015) Identification of G protein-biased agonists that fail to recruit β-arrestin or promote internalization of the D1 dopamine receptor. ACS Chem Neurosci 6:681–692. https://doi.org/10.1021/acschemneuro.5b00020

Article  CAS  PubMed  Google Scholar 

Martini ML, Liu J, Ray C et al (2019) Defining Structure-functional selectivity relationships (SFSR) for a class of non-catechol dopamine D1 receptor agonists. J Med Chem 62:3753–3772. https://doi.org/10.1021/acs.jmedchem.9b00351

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martini ML, Ray C, Yu X et al (2019) Designing Functionally selective noncatechol dopamine D1 receptor agonists with potent in vivo antiparkinsonian activity. ACS Chem Neurosci 10:4160–4182. https://doi.org/10.1021/acschemneuro.9b00410

Article  CAS  PubMed  Google Scholar 

Wang P, Felsing DE, Chen H et al (2019) Synthesis and pharmacological evaluation of noncatechol G protein biased and unbiased dopamine D1 receptor agonists. ACS Med Chem Lett 10:792–799. https://doi.org/10.1021/acsmedchemlett.9b00050

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park H, Urs AN, Zimmerman J et al (2020) Structure–functional–selectivity relationship studies of novel apomorphine analogs to develop D1R/D2R biased ligands. ACS Med Chem Lett 11:385–392. https://doi.org/10.1021/acsmedchemlett.9b00575

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Lee S-M, Imamura F et al (2021) D1 dopamine receptors intrinsic activity and functional selectivity affect working memory in prefrontal cortex. Mol Psychiatry 26:645–655. https://doi.org/10.1038/s41380-018-0312-1

Article  CAS  PubMed  Google Scholar 

Li H, Mirabel R, Zimmerman J et al (2022) Structure-functional selectivity relationship studies on A-86929 analogs and small aryl fragments toward the discovery of biased dopamine D1 receptor agonists. ACS Chem Neurosci 13:1818–1831. https://doi.org/10.1021/acschemneuro.2c00235

Article  CAS  PubMed  Google Scholar 

Zhuang Y, Xu P, Mao C et al (2021) Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell 184:931-942.e18. https://doi.org/10.1016/j.cell.2021.01.027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao P, Yan W, Gou L et al (2021) Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes. Cell 184:943-956.e18. https://doi.org/10.1016/j.cell.2021.01.028

Article  CAS  PubMed  Google Scholar 

Zhuang Y, Krumm B, Zhang H et al (2021) Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Res. https://doi.org/10.1038/s41422-021-00482-0

Article  PubMed  PubMed Central  Google Scholar 

Sun B, Feng D, Chu ML-H et al (2021) Crystal structure of dopamine D1 receptor in complex with G protein and a non-catechol agonist. Nat Commun 12:3305. https://doi.org/10.1038/s41467-021-23519-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teng X, Chen S, Nie Y et al (2022) Ligand recognition and biased agonism of the D1 dopamine receptor. Nat Commun 13:3186. https://doi.org/10.1038/s41467-022-30929-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dror RO, Arlow DH, Maragakis P et al (2011) Activation mechanism of the 2-adrenergic receptor. Proc Natl Acad Sci 108:18684–18689. https://doi.org/10.1073/pnas.1110499108

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perez-Aguilar JM, Shan J, LeVine MV et al (2014) A Functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2. J Am Chem Soc 136:16044–16054. https://doi.org/10.1021/ja508394x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kapoor A, Martinez-Rosell G, Provasi D et al (2017) Dynamic and kinetic elements of µ-opioid receptor functional selectivity. Sci Rep 7:11255. https://doi.org/10.1038/s41598-017-11483-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suomivuori C-M, Latorraca NR, Wingler LM et al (2020) Molecular mechanism of biased signaling in a prototypical G protein–coupled receptor. Science 367:881–887. https://doi.org/10.1126/science.aaz0326

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu W, Shen J, Luo X et al (2007) Dopamine D1 receptor agonist and D2 receptor antagonist effects of the natural product (−)–stepholidine: molecular modeling and dynamics simulations. Biophys J 93:1431–1441. https://doi.org/10.1529/biophysj.106.088500

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong Y, Fu W, Chen K (2012) Dopamine D1 receptor and serotonin 5-HT1A receptor agonist effects of the natural product (–)-stepholidine: molecular modelling and dynamics simulations. Mol Simul 38:970–979. https://doi.org/10.1080/08927022.2012.679619

留言 (0)

沒有登入
gif