Anti-diabetic Effect of Major Compounds from Commelina diffusa

Alqahtani AS, Hidayathulla S, Rehman MT, ElGamal AA, Al-Massarani S, Razmovski-Naumovski V, Alqahtani MS, El Dib RA, AlAjmi MF (2019) Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules 10:61. https://doi.org/10.3390/biom10010061

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anzoise ML, Basso AR, Mauro JSD, Carranza A, Ordieres GL, Gorzalczany S (2018) Potential usefulness of methyl gallate in the treatment of experimental colitis. Inflammopharmacology 26:839–849. https://doi.org/10.1007/s10787-017-0412-6

Article  CAS  PubMed  Google Scholar 

Bhatia A, Singh B, Arora R, Arora S (2019) In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of traditionally used antidiabetic plants. MBC Complement Altern Med 19:74. https://doi.org/10.1186/s12906-019-2482-z

Article  Google Scholar 

Boyette CD, Hoagland RE, Stetina KC (2015) Biological control of spreading dayflower (Commelina diffusa) with the fungal pathogen Phoma commelinicola. Agronomy 5:519–536. https://doi.org/10.3390/agronomy5040519

Article  CAS  Google Scholar 

Chiabchalard A, Nooron N (2015) Antihyperglycemic effects of Pandanus amaryllifolius Roxb. leaf extract. Pharmacogn Mag 11:117–122. https://doi.org/10.4103/0973-1296.149724

Article  PubMed  PubMed Central  Google Scholar 

Chumroenphat T, Saensouk S (2021) Amino acids, bioactive compounds and biological activities of ten species from family Commelinaceae in Thailand. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49:12391. https://doi.org/10.15835/nbha49312391

Article  CAS  Google Scholar 

Gurjar HPS, Irchhaiya R, Vermas A (2016) Antidiabetic activity and phytochemical investigation on the whole plant of Commelina benghalensis Linn. in male albino rat. J Drug Deliv Ther 6:26–29. https://doi.org/10.22270/jddt.v6i2.1200

Article  CAS  Google Scholar 

Ho PH (2003) Vietnamese plants. Tre Publishing House, Hochiminh

Google Scholar 

Islam MM, Rahman M, Asaduzzaman M, Ali MS (2021) Antioxidant, analgesic and CNS depressant activities of Commelina diffusa Burm.f. Dhaka Univ J Pharm Sci 20:159–166. https://doi.org/10.3329/dujps.v20i2.57166

Article  CAS  Google Scholar 

Jiang Y, Yu L, Wang MH (2015) N-trans-feruloyltyramine inhibits LPS-induced NO and PGE2 production in RAW 264.7 macrophages: involvement of AP-1 and MAP kinase signalling pathways. Chem-Biol Interact 235:56–62. https://doi.org/10.1016/j.cbi.2015.03.029

Article  CAS  PubMed  Google Scholar 

Kamble S (2019) Nutraceutical investigations of Commelina diffusa Burm.f. leaves – a popular wild vegetable. Plant Sci 2:34–39. https://doi.org/10.32439/ps.v2i3.34-39

Article  Google Scholar 

Khan MAA, Islam MT, Sadhu SK (2011) Evaluation of phytochemical and antimicrobial properties of Commelina diffusa Burm.f. Orient Pharm Exp Med 11:235–241. https://doi.org/10.1007/s13596-011-0028-0

Article  Google Scholar 

Lordan S, Smyth TJ, Soler-Vila A, Stanton C, Ross RP (2013) The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem 141:2170–2176. https://doi.org/10.1016/j.foodchem.2013.04.123

Article  CAS  PubMed  Google Scholar 

Mandal N, Grambergs R, Mondal K, Basu SK, Tahia F, Dagogo-Jack S (2021) Role of ceramides in the pathogenesis of diabetes mellitus and its complications. J Diabetes Complicat 35:107734. https://doi.org/10.1016/j.jdiacomp.2020.107734

Article  CAS  Google Scholar 

Moradi-Afrapoli F, Asghari B, Saeidnia S, Ajani Y, Mirjani M, Malmir M, Bazaz RD, Hadjiakhoondi A, Salehi P, Hamburger M, Yassa N (2012) In vitro α-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polygonum hyrcanicum. DARU J Pharm Sci 20:37. https://doi.org/10.1186/2008-2231-20-37

Article  CAS  Google Scholar 

Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, Zinman B (2006) Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the study of diabetes. Diabetes Care 29:1963–1972. https://doi.org/10.2337/dc06-9912

Article  PubMed  Google Scholar 

Patel DK, Prasad SK, Kumar R, Hemalatha S (2012) An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2:320–330. https://doi.org/10.1016/S2221-1691(12)60032-X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peungvicha P, Thirawarapan SS, Watanabe H (1998) Possible mechanism of hypoglycemic effect of 4-hydroxybenzoic acid, a constituent of Pandanus odorus root. Jpn J Pharmacol 78:395–398. https://doi.org/10.1254/jjp.78.395

Article  CAS  PubMed  Google Scholar 

Saltos MBV, Puente BFN, Faraone I, Milella L, Tommasi ND, Braca A (2015) Inhibitors of α-amylase and α-glucosidase from Andromachia igniaria Humb. & Bonpl. Phytochem Lett 14:45–50. https://doi.org/10.1016/j.phytol.2015.08.018

Article  CAS  Google Scholar 

Scheen AJ (2007) Antidiabetic agents in subjects with mild dysglycaemia: prevention or early treatment of type 2 diabetes? Diabetes Metab 33:3–12. https://doi.org/10.1016/j.diabet.2006.11.005

Article  CAS  PubMed  Google Scholar 

Shibano M, Kakutani K, Taniguchi M, Yasuda M, Baba K (2008) Antioxidant constituents in the dayflower (Commelina communis L.) and their alpha-glucosidase inhibitory activity. J Nat Med 62:349–353. https://doi.org/10.1007/s11418-008-0244-1

Article  CAS  PubMed  Google Scholar 

Sultana T, Mannan MA, Ahmed T (2018) Evaluation of central nervous system (CNS) depressant activity of methanolic extract of Commelina diffusa Burm. in mice. Clin Phytosci 4:5. https://doi.org/10.1186/s40816-018-0063-1

Article  CAS  Google Scholar 

Youn JY, Park HY, Cho KH (2004) Anti-hyperglycemic activity of Commelina communis L.: inhibition of α-glucosidase. Diabetes Res Clin Pract 66:149–155. https://doi.org/10.1016/j.diabres.2003.08.015

Article  Google Scholar 

Yue XD, Qu GW, Li BF, Xue CH, Li GS, Dai SJ (2012) Two new C13-norisoprenoids from Solanum lyratum. J Asian Nat Prod Res 14:486–490. https://doi.org/10.1080/10286020.2012.678331

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif