Amelioration of Cognitive Deficit by Cryptotanshinone in a Long-term Utilisation of Proton Pump Inhibitor-Induced Alzheimer’s Disease-Like Condition in a Rat Model

Ağagündüz D, Kocaadam-Bozkurt B, Bozkurt O, Sharma H, Esposito R, Özoğul F, Capasso R (2022) Microbiota alteration and modulation in Alzheimer’s disease by gerobiotics: the gut-health axis for a good mind. Biomed Pharmacother 153:113430. https://doi.org/10.1016/j.biopha.2022.113430

Article  CAS  PubMed  Google Scholar 

Akter S, Hassan M, Shahriar M, Akter N, Abbas M, Bhuiyan MA (2015) Cognitive impact after short-term exposure to different proton pump inhibitors: assessment using CANTAB software. Alz Res Therapy 7:79. https://doi.org/10.1186/s13195-015-0164-8

Article  CAS  Google Scholar 

Badiola N, Alcalde V, Pujol A, Münter LM, Multhaup G, Lleó A, Coma M, Soler-López M, Aloy P (2013) The proton-pump inhibitor lansoprazole enhances amyloid beta production. PloS One 8:e58837. https://doi.org/10.1371/journal.pone.0058837

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bahn G, Park JS, Yun UJ, Lee YJ, Choi Y, Park JS, Baek SH, Choi BY, Cho YS, Kim HK, Han J (2019) NRF2/ARE pathway negatively regulates BACE1 expression and ameliorates cognitive deficits in mouse Alzheimer’s models. Proc Natl Acad Sci 116:12516–12523. https://doi.org/10.1073/pnas.1819541116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnhart CD, Yang D, Lein PJ (2015) Using the Morris water maze to assess spatial learning and memory in weanling mice. PloS One 10:e0124521. https://doi.org/10.1371/journal.pone.0124521

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartos M, Gumilar F, Gallegos CE, Bras C, Dominguez S, Cancela LM, Minetti A (2019) Effects of perinatal fluoride exposure on short-and long-term memory, brain antioxidant status, and glutamate metabolism of young rat pups. Int J Toxicol 38:405–414. https://doi.org/10.1177/1091581819857558

Article  CAS  PubMed  Google Scholar 

Dhami M, Raj K, Singh S (2021) Neuroprotective effect of fucoxanthin against intracerebroventricular streptozotocin (ICV-STZ) induced cognitive impairment in experimental rats. Curr Alzheimer Res 18:623–637. https://doi.org/10.2174/1567205018666211118144602

Article  CAS  PubMed  Google Scholar 

Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM (2016) Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 14:101–115. https://doi.org/10.2174/1570159x13666150716165726

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forman HJ, Zhang H (2021) Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 20:689–709. https://doi.org/10.1038/s41573-021-00233-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galva C, Artigas P, Gatto C (2012) Nuclear Na+/K+-ATPase plays an active role in nucleoplasmic Ca2+ homeostasis. J Cell Sci 125:6137–6147. https://doi.org/10.1242/jcs.114959

Article  CAS  PubMed  PubMed Central  Google Scholar 

He F, Ru X, Wen T (2020) NRF2, a transcription factor for stress response and beyond. Int J Mol Sci 21:4777. https://doi.org/10.3390/ijms21134777

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kadry H, Noorani B, Cucullo L (2020) A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17:69. https://doi.org/10.1186/s12987-020-00230-3

Article  PubMed  PubMed Central  Google Scholar 

Kaur S, Raj K, Gupta YK, Singh S (2021) Allicin ameliorates aluminium-and copper-induced cognitive dysfunction in Wistar rats: relevance to neuro-inflammation, neurotransmitters and Aβ (1–42) analysis. J Biol Inorg Chem 26:495–510. https://doi.org/10.1007/s00775-021-01866-8

Article  CAS  PubMed  Google Scholar 

Maione F, Piccolo M, De Vita S, Chini MG, Cristiano C, De Caro C, Lippiello P, Miniaci MC, Santamaria R, Irace C, De Feo V (2018) Down regulation of proinflammatory pathways by tanshinone IIA and cryptotanshinone in a non-genetic mouse model of Alzheimer’s disease. Pharmacol Res 129:482–490. https://doi.org/10.1016/j.phrs.2017.11.018

Article  CAS  PubMed  Google Scholar 

Ortiz-Guerrero G, Amador-Muñoz D, Calderón-Ospina CA, López-Fuentes D, Nava Mesa MO (2018) Proton pump inhibitors and dementia: physiopathological mechanisms and clinical consequences. Neural Plast 2018:5257285. https://doi.org/10.1155/2018/5257285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel M, Singh S (2022) Apigenin attenuates functional and structural alterations via targeting NF-kB/Nrf2 signalling pathway in LPS-induced parkinsonism in experimental rats: apigenin attenuates LPS-induced Parkinsonism in experimental rats. Neurotox Res 40:941–960. https://doi.org/10.1007/s12640-022-00521-7

Article  CAS  PubMed  Google Scholar 

Pivovarov AS, Calahorro F, Walker RJ (2019) Na+/K+-pump and neurotransmitter membrane receptors. Invert Neurosci 19:1. https://doi.org/10.1007/s10158-018-0221-7

Article  CAS  Google Scholar 

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017:8416763. https://doi.org/10.1155/2017/8416763

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raj K, Gupta GD, Singh S (2022) L-Theanine ameliorates motor deficit, mitochondrial dysfunction, and neurodegeneration against chronic tramadol induced rat model of Parkinson’s disease. Drug Chem Toxicol 45:2097–2108. https://doi.org/10.1080/01480545.2021.1907909

Article  CAS  PubMed  Google Scholar 

Ramesh V, Rao BA, Sharma P, Swarna B, Thummuri D, Srinivas K, Naidu VG, Rao VJ (2014) Synthesis and biological evaluation of new rhodanine analogues bearing 2-chloroquinoline and benzo [h] quinoline scaffolds as anticancer agents. Eur J Med Chem 83:569–580. https://doi.org/10.1016/j.ejmech.2014.06.013

Article  CAS  PubMed  Google Scholar 

Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT, Jordan-Sciutto KL (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66:75–85. https://doi.org/10.1097/nen.0b013e31802d6da9

Article  CAS  PubMed  Google Scholar 

Rauf A, Badoni H, Abu-Izneid T, Olatunde A, Rahman MM, Painuli S, Mubarak MS (2022) Neuroinflammatory markers: key indicators in the pathology of neurodegenerative diseases. Molecules 27:3194. https://doi.org/10.3390/molecules27103194

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD (2015) Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front Neurosci 9:385. https://doi.org/10.3389/fnins.2015.00385

Article  PubMed  PubMed Central  Google Scholar 

Singh L, Shamsher S (2023) Neuroprotective potential of Honokiol in ICV-STZ induced neuroinflammation, Aβ (1–42) and NF-kB expression in experimental model of rats. Neurosci Lett 799:137090. https://doi.org/10.1016/j.neulet.2023.137090

Article  CAS  PubMed  Google Scholar 

Song H, Zhu J, Lu D (2014) Long-term proton pump inhibitor (PPI) use and the development of gastric pre-malignant lesions. Cochrane Database Syst Rev 2014:CD010623. https://doi.org/10.1002/14651858.cd010623.pub2

Article  Google Scholar 

Veskoukis AS, Margaritelis NV, Kyparos A, Paschalis V, Nikolaidis MG (2018) Spectrophotometric assays for measuring redox biomarkers in blood and tissues: the NADPH network. Redox Rep 23:47–56. https://doi.org/10.1080/13510002.2017.1392695

Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322–328. https://doi.org/10.1038/nprot.2007.44

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong KK, Ho MT, Lin HQ, Lau KF, Rudd JA, Chung RC, Fung KP, Shaw PC, Wan DC (2010) Cryptotanshinone, an acetylcholinesterase inhibitor from Salvia miltiorrhiza, ameliorates scopolamine-induced amnesia in Morris water maze task. Planta Med 76:228–234. https://doi.org/10.1055/s-0029-1186084

Article  CAS  PubMed  Google Scholar 

Wu C, Sun D (2015) GABA receptors in brain development, function, and injury. Metab Brain Dis 30:367–379. https://doi.org/10.1007/s11011-014-9560-1

Article  CAS  PubMed  Google Scholar 

Wu YH, Wu YR, Li B, Yan ZY (2020) Cryptotanshinone: a review of its pharmacology activities and molecular mechanisms. Fitoterapia 145:104633. https://doi.org/10.1016/j.fitote.2020.104633

Article  CAS  PubMed  Google Scholar 

Xia W, Yang T, Shankar G, Smith IM, Shen Y, Walsh DM, Selkoe DJ (2009) A specific enzyme-linked immunosorbent assay for measuring β-amyloid protein oligomers in human plasma and brain tissue of patients with Alzheimer disease. Arch Neurol 66:190–199. https://doi.org/10.1001/archneurol.2008.565

Article  PubMed  PubMed Central  Google Scholar 

Xu D, Gui C, Zhao H, Liu F (2021) Cryptotanshinone protects hippocampal neurons against oxygen-glucose deprivation-induced injury through the activation of Nrf2/HO-1 signalling pathway. Food Sci Technol 42 https://doi.org/10.1590/fst.46521

Yen LF, Wei VC, Kuo EY, Lai TW (2013) Distinct patterns of cerebral extravasation by Evans blue and sodium fluorescein in rats. PloS One 8:e68595. https://doi.org/10.1371/journal.pone.0068595

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao H, Zheng T, Yang X, Fan M, Zhu L, Liu S, Wu L, Sun C (2019) Cryptotanshinone attenuates oxygen-glucose deprivation/recovery-induced injury in an in vitro model of neurovascular unit. Front Neurol 10:381. https://doi.org/10.3389/fneur.2019.00381

留言 (0)

沒有登入
gif