Metabolic Syndrome and Cardiac Remodeling Due to Mitochondrial Oxidative Stress Involving Gliflozins and Sirtuins

Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics—2021 update; a report from the American Heart Association. Circulation. 2021;143:e254-743.

Article  PubMed  Google Scholar 

Pan American Health Organization. WHO reveals leading causes of death and disability worldwide: 2000–2019. Available from: https://www.paho.org/en/news/9-12-2020-who-reveals-leading-causes-death-and-disability-worldwide-2000-2019.

Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov. 2018;17:865–86.

Article  CAS  PubMed  Google Scholar 

Porter LC, Franczyk MP, Pietka T, Yamaguchi S, Lin JB, Sasaki Y, et al. NAD+-dependent deacetylase SIRT3 in adipocytes is dispensable for maintaining normal adipose tissue mitochondrial function and whole body metabolism. Am J Physiol Endocrinol Metab. 2018;315:E520-530.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ilkun O, Boudina S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des. 2013;19:4806–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferder L, Inserra F, Martínez-Maldonado M. Inflammation and the metabolic syndrome: role of angiotensin II and oxidative stress. Curr Hypertens Rep. 2006;8:191–8.

Article  CAS  PubMed  Google Scholar 

Cabandugama PK, Gardner MJ, Sowers JR. The renin angiotensin aldosterone system in obesity and hypertension: roles in the cardiorenal metabolic syndrome. Med Clin North Am. 2017;101:129–37.

Article  PubMed  PubMed Central  Google Scholar 

Verdejo HE, del Campo A, Troncoso R, Gutierrez T, Toro B, Quiroga C, et al. Mitochondria, myocardial remodeling, and cardiovascular disease. Curr Hypertens Rep. 2012;14(6):532–9.

Article  CAS  PubMed  Google Scholar 

•• de Cavanagh EM, Inserra F, Ferder L. Angiotensin II blockade: how its molecular targets may signal to mitochondria and slow aging. Coincidences with calorie restriction and mTOR inhibition. Am J Physiol Heart Circ Physiol. 2015;309:H15–44. The authors reviewed different mechanisms and pathways mimicking calory restriction and RAS blockade in the tissues and cells' protection. They underline the down-regulation of mTOR and IGF-I and the up-regulation of klotho and sirtuins as central players. Moreover, postulate that through these mechanisms, both strategies can produce cardiovascular protection and may further extend the lifespan of mammals.

Maissan P, Mooij EJ, Barberis M. Sirtuins-mediated system-level regulation of mammalian tissues at the interface between metabolism and cell cycle: a systematic review. Biology (Basel). 2021;10:194.

CAS  PubMed  Google Scholar 

Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal. 2018;28(8):643–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abadir PM, Foster DB, Crow M, Cooke CA, Rucker JJ, Jain A, et al. Identification and characterization of a functional mitochondrial angiotensin system. Proc Natl Acad Sci USA. 2011;108(36):14849–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manucha W, Ritchie B, Ferder L. Hypertension and insulin resistance: implications of mitochondrial dysfunction. Curr Hypertens Rep. 2014;17(1):1–7.

Google Scholar 

de Cavanagh EM, Ferder M, Inserra F, Ferder L. Angiotensin II, mitochondria, cytoskeletal, and extracellular matrix connections: an integrating viewpoint. Am J Physiol Heart Circ Physiol. 2009;296:H550-558.

Article  PubMed  Google Scholar 

de Cavanagh EM, Inserra F, Ferder M, Ferder L. From mitochondria to disease: role of the renin-angiotensin system. Am J Nephrol. 2007;27:545–53.

Article  PubMed  Google Scholar 

Ricci C, Pastukh V, Schaffer SW. Involvement of the mitochondrial permeability transition pore in angiotensin II-mediated apoptosis. Exp Clin Cardiol. 2005;10(3):160–4.

CAS  PubMed  PubMed Central  Google Scholar 

Shokolenko IN, Wilson GL, Alexeyev MF. Aging: a mitochondrial DNA perspective, critical analysis and an update. World J Exp Med. 2014;4(4):46–57.

Article  PubMed  PubMed Central  Google Scholar 

Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E. The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY). 2013;5:144–50.

Article  CAS  PubMed  Google Scholar 

O’Neill S, O’Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16(1):1–12.

Article  CAS  PubMed  Google Scholar 

Kalupahana NS, Moustaid-Moussa N, Claycombe KJ. Immunity as a link between obesity and insulin resistance. Mol Asp Med. 2012;33(1):26–34.

Article  CAS  Google Scholar 

Matsushima S, Sadoshima J. The role of sirtuins in cardiac disease. Am J Physiol Heart Circ Physiol. 2015;309:H1375–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cortes-Rojo C, Vargas-Vargas MA, Olmos-Orizaba BE, Rodriguez-Orozco AR, Calderon-Cortes E. Interplay between NADH oxidation by complex I, glutathione redox state and sirtuin-3, and its role in the development of insulin resistance. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165801–17.

Article  CAS  PubMed  Google Scholar 

Wu YT, Wu SB, Wei YH. Roles of sirtuins in the regulation of antioxidant defense and bioenergetic function of mitochondria under oxidative stress. Free Radic Res. 2014;48:1070–84.

Article  CAS  PubMed  Google Scholar 

Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA. 2008;105:14447–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo YX, Tang X, An XZ, Xie XM, Chen XF, Zhao X, et al. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur Heart J. 2017;38:1389–98.

CAS  PubMed  Google Scholar 

D’Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid Redox Signal. 2018;28:711–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Wilson AJ, Gill EK, Abudalo RA, Edgar KS, Watson CJ, Grieve DJ. Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting. Heart. 2018;104:293–9. This review explores the contributions of the most significant ROS sources in diabetic myocardiopathy. The authors additionally reviewed different potential strategies for targeting ROS signaling with pharmacological and non-pharmacological approaches trying to impact cardiovascular remodeling and delay the progression of myocardial damage.

Article  CAS  PubMed  Google Scholar 

Kaludercic N, Di Lisa F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front Cardiovasc Med. 2020;7:12. https://doi.org/10.3389/fcvm.2020.00012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Natali A, Nesti L, Fabiani I, Calogero E, Di Bello V. Impact of empaglifozin on subclinical left ventricular dysfunctions and on the mechanisms involved in myocardial disease progression in type 2 diabetes: rationale and design of the EMPA-HEART trial. Cardiovasc Diabetol. 2017;16(1):130.

Article  PubMed  PubMed Central  Google Scholar 

Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol. 2016;90:84–93.

Article  CAS  PubMed  Google Scholar 

de Cavanagh EM, Inserra F, Toblli J, Stella I, Fraga CG, Ferder L. Enalapril attenuates oxidative stress in diabetic rats. Hypertension. 2001;38:1130–6.

Article  PubMed  Google Scholar 

Ramalingam L, Menikdiwela K, LeMieux M, Dufour JM, Kaur G, Kalupahana N, et al. The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1106–14.

Article  CAS  PubMed  Google Scholar 

Jiang F, Liu GS, Dusting GJ, Chan EC. NADPH oxidase-dependent redox signaling in TGF-beta-mediated fibrotic responses. Redox Biol. 2014;2:267–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018;128:3716–26.

Article  PubMed  PubMed Central  Google Scholar 

•• Packer M. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol. 2020;19:62. The author reviewed and underlined the effect of SGLT2 on cellular stress and autophagy by activating sirtuins 1 and AMPK. In addition, the enhanced activity of HIF-2α stimulates erythrocytosis and oxygen supply to the myocardium. Their action on nutrient deprivation pathways may give SGLT2 inhibitors the ability to attenuate oxidative stress improve heart function, and reduce cardiovascular events.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif