Repurposing antidiabetic drugs for rheumatoid arthritis: results from a two-sample Mendelian randomization study

Safiri S, Kolahi AA, Hoy D, et al. Global, regional and national burden of rheumatoid arthritis 1990–2017: a systematic analysis of the Global Burden of Disease study 2017. Ann Rheum Dis. 2019;78(11):1463–71. https://doi.org/10.1136/annrheumdis-2019-215920.

Article  PubMed  Google Scholar 

Smolen JS, Landewe RBM, Bijlsma JWJ, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020;79(6):685–99. https://doi.org/10.1136/annrheumdis-2019-216655.

Article  CAS  PubMed  Google Scholar 

Putrik P, Ramiro S, Kvien TK, et al. Inequities in access to biologic and synthetic DMARDs across 46 european countries. Ann Rheum Dis. 2014;73(1):198–206. https://doi.org/10.1136/annrheumdis-2012-202603.

Article  CAS  PubMed  Google Scholar 

Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3(8):673–83. https://doi.org/10.1038/nrd1468.

Article  CAS  PubMed  Google Scholar 

Ristic GG, Subota V, Stanisavljevic D, et al. Impact of disease activity on impaired glucose metabolism in patients with rheumatoid arthritis. Arthritis Res Ther. 2021;23(1):95. https://doi.org/10.1186/s13075-021-02476-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

American Diabetes Association Professional Practice Committee. 9. Pharmacologic approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2022. Diabetes Care. 2021;45 Suppl 1:125–S43. https://doi.org/10.2337/dc22-S009.

Naffaa ME, Rosenberg V, Watad A, et al. Adherence to metformin and the onset of rheumatoid arthritis: a population-based cohort study. Scand J Rheumatol. 2020;49(3):173–80. https://doi.org/10.1080/03009742.2019.1695928.

Article  CAS  PubMed  Google Scholar 

Hsieh MS, Hung PS, Hsieh VC, Liao SH, How CK. Association between thiazolidinedione use and rheumatoid arthritis risk in patients with type II diabetes, a population-based, case-control study. Int J Clin Pract. 2021;75(3):e13804. https://doi.org/10.1111/ijcp.13804.

Article  CAS  PubMed  Google Scholar 

Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696–705. https://doi.org/10.1016/S0140-6736(06)69705-5.

Article  CAS  PubMed  Google Scholar 

Charoenngam N, Rittiphairoj T, Ponvilawan B, Ungprasert P. Use of dipeptidyl peptidase-4 inhibitors is associated with a lower risk of rheumatoid arthritis in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies. Diabetes Metab Syndr. 2021;15(1):249–55. https://doi.org/10.1016/j.dsx.2020.12.042.

Article  CAS  PubMed  Google Scholar 

Du X, Zhang H, Zhang W, et al. The protective effects of lixisenatide against inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. Int Immunopharmacol. 2019;75:105732. https://doi.org/10.1016/j.intimp.2019.105732.

Article  CAS  PubMed  Google Scholar 

Tao Y, Ge G, Wang Q, et al. Exenatide ameliorates inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. IUBMB Life. 2019;71(7):969–77. https://doi.org/10.1002/iub.2031.

Article  CAS  PubMed  Google Scholar 

Walker VM, Davey Smith G, Davies NM, Martin RM. Mendelian randomization: a novel approach for the prediction of adverse drug events and drug repurposing opportunities. Int J Epidemiol. 2017;46(6):2078–89. https://doi.org/10.1093/ije/dyx207.

Article  PubMed  PubMed Central  Google Scholar 

Smith GD, Ebrahim S. Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22. https://doi.org/10.1093/ije/dyg070.

Article  PubMed  Google Scholar 

Gill D, Georgakis MK, Walker VM, et al. Mendelian randomization for studying the effects of perturbing drug targets. Wellcome open research. 2021;6:16. https://doi.org/10.12688/wellcomeopenres.16544.2.

Article  PubMed  PubMed Central  Google Scholar 

Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9. https://doi.org/10.1038/s41586-018-0579-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ishigaki K, Sakaue S, Terao C et al. Trans-ancestry genome-wide association study identifies novel genetic mechanisms in rheumatoid arthritis. medRxiv. 2021:2021.12.01.21267132. https://doi.org/10.1101/2021.12.01.21267132

Allen NE, Sudlow C, Peakman T, Collins R. UK biobank data: come and get it. Sci Transl Med. 2014;6(224):224ed4. https://doi.org/10.1126/scitranslmed.3008601.

Article  PubMed  Google Scholar 

Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–D82. https://doi.org/10.1093/nar/gkx1037.

Article  CAS  PubMed  Google Scholar 

Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017;45(D1):D945–D54. https://doi.org/10.1093/nar/gkw1074.

Article  CAS  PubMed  Google Scholar 

Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31(21):3555–7. https://doi.org/10.1093/bioinformatics/btv402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005–D12. https://doi.org/10.1093/nar/gky1120.

Article  CAS  PubMed  Google Scholar 

Deeb SS, Fajas L, Nemoto M, et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998;20(3):284–7. https://doi.org/10.1038/3099.

Article  CAS  PubMed  Google Scholar 

Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26(1):76–80. https://doi.org/10.1038/79216.

Article  CAS  PubMed  Google Scholar 

Hamming KS, Soliman D, Matemisz LC, et al. Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K(+) channel. Diabetes. 2009;58(10):2419–24. https://doi.org/10.2337/db09-0143.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Emdin CA, Klarin D, Natarajan P, et al. Genetic variation at the Sulfonylurea receptor, type 2 diabetes, and Coronary Heart Disease. Diabetes. 2017;66(8):2310–5. https://doi.org/10.2337/db17-0149.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess S, Davey Smith G, Davies NM, et al. Guidelines for performing mendelian randomization investigations. Wellcome Open Res. 2019;4:186. https://doi.org/10.12688/wellcomeopenres.15555.2.

Article  PubMed  Google Scholar 

Tsapas A, Karagiannis T, Kakotrichi P, et al. Comparative efficacy of glucose-lowering medications on body weight and blood pressure in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Obes Metab. 2021;23(9):2116–24. https://doi.org/10.1111/dom.14451.

Article  CAS  PubMed  Google Scholar 

Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. https://doi.org/10.1038/nature14177.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shungin D, Winkler TW, Croteau-Chonka DC, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518(7538):187–96. https://doi.org/10.1038/nature14132.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yki-Jarvinen H, Thiazolidinediones. N Engl J Med. 2004;351(11):1106–18. https://doi.org/10.1056/NEJMra041001.

Article  PubMed  Google Scholar 

Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes Mellitus Management. Front Endocrinol (Lausanne). 2017;8:6. https://doi.org/10.3389/fendo.2017.00006.

Article  PubMed  Google Scholar 

Scott RA, Scott LJ, Magi R, et al. An expanded genome-wide Association study of type 2 diabetes in Europeans. Diabetes. 2017;66(11):2888–902. https://doi.org/10.2337/db16-1253.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16. https://doi.org/10.1038/ng.520.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lagou V, Magi R, Hottenga JJ, et al. Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nat Commun. 2021;12(1):24. https://doi.org/10.1038/s41467-020-19366-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Broadaway KA, Yin X, Williamson A, et al. Loci for insulin processing and secretion provide insight into type 2 diabetes risk. Am J Hum Genet. 2023;110(2):284–99. https://doi.org/10.1016/j.ajhg.2023.01.002.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif