Prospects and challenges for nitrogen-atom transfer catalysis

Padwa, A. in Comprehensive Heterocyclic Chemistry III (eds Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V. & Taylor, R. J. K.) 1–104 (Elsevier, 2008).

Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

Article  CAS  PubMed  Google Scholar 

Botuha, C., Chemla, F., Ferreira, F. & Pérez-Luna, A. in Heterocycles in Natural Product Synthesis (eds Majumdar, K. C. & Chattopadhyay, S. K.) 1–39 (Wiley, 2011).

Podyacheva, E., Afanasyev, O. I., Tsygankov, A. A., Makarova, M. & Chusov, D. Hitchhiker’s guide to reductive amination. Synthesis 51, 2667–2677 (2019).

Article  CAS  Google Scholar 

Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, J.-Q., Li, J.-H. & Dong, Z.-B. A review on the latest progress of Chan–Lam coupling reaction. Adv. Synth. Catal. 362, 3311–3331 (2020).

Article  CAS  Google Scholar 

Boche, G., Bernheim, M. & Schrott, W. Primary amines via electrophilic amination of organometallic compounds with o-(diphenylphosphinyl)hydroxylamine. Tetrahedron Lett. 23, 5399–5402 (1982).

Article  CAS  Google Scholar 

Degennaro, L., Trinchera, P. & Luisi, R. Recent advances in the stereoselective synthesis of aziridines. Chem. Rev. 114, 7881–7929 (2014).

Article  CAS  PubMed  Google Scholar 

Xiong, T. & Zhang, Q. New amination strategies based on nitrogen-centered radical chemistry. Chem. Soc. Rev. 45, 3069–3087 (2016).

Article  CAS  PubMed  Google Scholar 

O’Neil, L. G. & Bower, J. F. Electrophilic aminating agents in total synthesis. Angew. Chem. Int. Ed. 60, 25640–25666 (2021).

Article  Google Scholar 

Campbell, W. C., Tsikata, E., Lu, H.-I., van Buuren, L. D. & Doyle, J. M. Magnetic trapping and zeeman relaxation of NH (?3?-). Phys. Rev. Lett. 98, 213001 (2007).

Article  PubMed  Google Scholar 

Dequirez, G., Pons, V. & Dauban, P. Nitrene chemistry in organic synthesis: still in its infancy? Angew. Chem. Int. Ed. 51, 7384–7395 (2012).

Article  CAS  Google Scholar 

Roizen, J. L., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc. Chem. Res. 45, 911–922 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin, K., Kim, H. & Chang, S. Transition-metal-catalyzed C–N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C–H amination. Acc. Chem. Res. 48, 1040–1052 (2015).

Article  CAS  PubMed  Google Scholar 

Clark, J. R., Feng, K., Sookezian, A. & White, M. C. Manganese-catalysed benzylic C(sp3)–H amination for late-stage functionalization. Nat. Chem. 10, 583–591 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, H. & Zhang, X. P. Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions. Chem. Soc. Rev. 40, 1899–1909 (2011).

Article  CAS  PubMed  Google Scholar 

Singh, R. & Mukherjee, A. Metalloporphyrin catalyzed C–H amination. ACS Catal. 9, 3604–3617 (2019).

Article  CAS  Google Scholar 

Paudyal, M. P. et al. Dirhodium-catalyzed C–H arene amination using hydroxylamines. Science 353, 1144–1147 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia, Z.-J., Gao, S. & Arnold, F. H. Enzymatic primary amination of benzylic and allylic C(sp3)–H bonds. J. Am. Chem. Soc. 142, 10279–10283 (2020).

Article  CAS  PubMed  Google Scholar 

Foerch, R., Mcintyre, N. S., Sodhi, R. N. S. & Hunter, D. H. Nitrogen plasma treatment of polyethylene and polystyrene in a remote plasma reactor. J. Appl. Polym. Sci. 40, 1903–1915 (1990).

Article  CAS  Google Scholar 

Zhou, S., Li, J., Schlangen, M. & Schwarz, H. Thermal dehydrogenation of methane by [ReN]+. Angew. Chem. Int. Ed. 55, 14863–14866 (2016).

Article  CAS  Google Scholar 

Zhou, S. D., Li, J. L., Schlangen, M. & Schwarz, H. Efficient room-temperature activation of methane by TaN+ under C–N coupling. Angew. Chem. Int. Ed. 55, 11678–11681 (2016).

Article  CAS  Google Scholar 

Zhou, S. D. et al. Selective nitrogen-atom transfer driven by a highly efficient intersystem crossing in the CeON (+)/CH4 system. Angew. Chem. Int. Ed. 57, 15902–15906 (2018).

Article  CAS  Google Scholar 

Smith, J. M. in Progress in Inorganic Chemisry Vol. 58 (ed. Karlin, K. D.) 417–470 (Wiley, 2014).

Du Bois, J., Tomooka, C. S., Hong, J. & Carreira, E. M. Nitridomanganese(V) complexes:  design, preparation, and use as nitrogen atom-transfer reagents. Acc. Chem. Res. 30, 364–372 (1997).

Article  Google Scholar 

Muñoz, S. B. III et al. Styrene aziridination by iron(IV) nitrides. Angew. Chem. Int. Ed. 54, 10600–10603 (2015).

Article  Google Scholar 

Xiang, J. et al. Photochemical nitrogenation of alkanes and arenes by a strongly luminescent osmium(VI) nitrido complex. Commun. Chem. 2, 40 (2019). An example of a stable metal nitride that performs NAT when photoexcited.

Article  Google Scholar 

Forrest, S. J. K., Schluschaß, B., Yuzik-Klimova, E. Y. & Schneider, S. Nitrogen fixation via splitting into nitrido complexes. Chem. Rev. 121, 6522–6587 (2021).

Article  CAS  PubMed  Google Scholar 

Suarez, A. I. O., Lyaskovskyy, V., Reek, J. N. H., van der Vlugt, J. I. & de Bruin, B. Complexes with nitrogen-centered radical ligands: classification, spectroscopic features, reactivity, and catalytic applications. Angew. Chem. Int. Ed. 52, 12510–12529 (2013). A good reference on the nomencalature of N-atom ligands.

Article  CAS  Google Scholar 

Berry, J. F. Terminal nitrido and imido complexes of the late transition metals. Comments Inorg. Chem. 30, 28–66 (2009).

Article  CAS  Google Scholar 

Dehnicke, K. & Strähle, J. Nitrido complexes of transition metals. Angew. Chem. Int. Ed. 31, 955–978 (1992).

Article  Google Scholar 

Eikey, R. A. & Abu-Omar, M. M. Nitrido and imido transition metal complexes of groups 6–8. Coord. Chem. Rev. 243, 83–124 (2003).

Article  CAS  Google Scholar 

Martelino, D. et al. Chromium nitride umpolung tuned by the locus of oxidation. J. Am. Chem. Soc. 144, 11594–11607 (2022).

Article  CAS  PubMed  Google Scholar 

Clarke, R. M. & Storr, T. Tuning electronic structure to control manganese nitride activation. J. Am. Chem. Soc. 138, 15299–15302 (2016).

Article  CAS  PubMed  Google Scholar 

Carsch, K. M. et al. Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. Science 365, 1138–1143 (2019). Provides a good explanation of the ligand field inversion in metal nitrenoids.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das, A., Van Trieste, G. P. & Powers, D. C. Crystallography of reactive intermediates. Comments Inorg. Chem. 40, 116–158 (2020).

Article  CAS  Google Scholar 

Schmidt-Räntsch, T. et al. Nitrogen atom transfer catalysis by metallonitrene C−H insertion: photocatalytic amidation of aldehydes. Angew. Chem. Int. Ed. 61, e202115626 (2022). A nice example of catalytic NAT from a bona fide M–N species.

Article  Google Scholar 

Long, A. K. M. et al. Aryl C–H amination by diruthenium nitrides in the solid state and in solution at room temperature: experimental and computational study of the reaction mechanism. J. Am. Chem. Soc. 133, 13138–13150 (2011).

Article  CAS  PubMed  Google Scholar 

Meyer, T. J. & Huynh, M. H. V. The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes. Inorg. Chem. 42, 8140–8160 (2003). Offers a good discussion on the orbital considerations that lead to ambiphilicity in metal nitrides.

Article  CAS  PubMed  Google Scholar 

Grant, L. N. et al. Pursuit of an electron deficient titanium nitride. Inorg. Chem. 60, 5635–5646 (2021).

Article  CAS  PubMed  Google Scholar 

Scheibel, M. G. et al. Closed-shell and open-shell square-planar iridium nitrido complexes. Nat. Chem. 4, 552–558 (2012).

Article  CAS  PubMed  Google Scholar 

Park, S. V., Corcos, A. R., Jambor, A. N., Yang, T. & Berry, J. F. Formation of the N≡N triple bond from reductive coupling of a paramagnetic diruthenium nitrido compound. J. Am. Chem. Soc. 144, 3259–3268 (2022).

Article  CAS  PubMed  Google Scholar 

Man, W.-L. et al. Highly electrophilic (salen)ruthenium(VI) nitrido complexes. J. Am. Chem. Soc. 126, 478–479 (2004).

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif