The promising guide to LC–MS analysis and cholinesterase activity of Luffa cylindrica (L.) fruit using in vitro and in-silico analyses

Patel SB, Ghane SG (2021) Phyto-constituents profiling of Luffa echinata and in vitro assessment of antioxidant, anti-diabetic, anticancer and anti-acetylcholine esterase activities. Saudi J Biol Sci 28:3835–3846. https://doi.org/10.1016/j.sjbs.2021.03.050

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bulbul IJ, Zulfiker AHM, Hamid K et al (2011) Comparative study of in vitro antioxidant, antibacterial and cytotoxic activity of two Bangladeshi medicinal plants—Luffa cylindrica L. and Luffa acutangula. Pharmacogn J 3:59–66. https://doi.org/10.5530/pj.2011.23.9

Article  Google Scholar 

Esmail A-S (2019) Constituents and pharmacology of Luffa cylindrical—a review. IOSR J Pharm 9:68–79

Google Scholar 

Azeez M, Bello O, Adedeji A (2013) Traditional and medicinal uses of Luffa cylindrica: a review. J Med Plants Stud 1:102–111

Google Scholar 

Hazra M, Kundusen S, Bhattacharya S et al (2011) Evaluation of hypoglycemic and antihyperglycemic effects of Luffa cylindrica fruit extract in rats. J Adv Pharm Educ Res 2:138–146

Google Scholar 

Shukla V, Nanjappaiah HM, Patil VP, Hugar S (2015) Protective effect of Luffa cylindrica fruit extracts on alloxan intoxicated diabetic rats. RGUHS J Pharm Sci 5:9–15

Google Scholar 

Dubey S, Saha S, Kaithwas G, Saraf S (2015) Effect of standardized fruit extract of Luffa cylindrica on oxidative stress markers in hydrogen peroxide induced cataract. Indian J Pharmacol 47:644. https://doi.org/10.4103/0253-7613.169586

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanwal W, Syed W, Salman A, Mohtasheem HM (2013) Anti-emetic and anti-inflammatory activity of fruit peel of Luffa cylindrica (L.) Roem. Asian J Nat Appl Sci 2:75–80

Google Scholar 

Devi GS, Muthu A, Dharmarajan SK et al (2009) Studies on the antibacterial and antifungal activities of the ethanolic extracts of Luffa cylindrica (Linn) fruit. Int J Drug Dev Res 1

Abdel-Salam IM, Ashmawy AM, Hilal AM et al (2018) Chemical composition of aqueous ethanol extract of Luffa cylindrica leaves and its effect on representation of caspase-8, caspase-3, and the proliferation marker Ki67 in intrinsic molecular subtypes of breast cancer in vitro. Chem Biodivers 15:e1800045. https://doi.org/10.1002/cbdv.201800045

Article  CAS  PubMed  Google Scholar 

Sharma NK, Priyanka JK et al (2014) Hepatoprotective activity of Luffa cylindrica (L.) M. J. Roem. leaf extract in paracetamol intoxicated rats. Indian J Nat Prod resurces 5:143–148

Google Scholar 

Tripathi A, Tandon M, Chandekar A et al (2016) In vitro antioxidant and anthelmintic activity on Luffa cylindrica leaf extracts. J Herbs Spices Med Plants 22:348–355. https://doi.org/10.1080/10496475.2016.1224211

Article  Google Scholar 

Muthumani P, Meera R, Mary S et al (2010) Phytochemical screening and anti inflammatory, bronchodilator and antimicrobial activities of the seeds of Luffa cylindrica. Phytochem Screen Anti inflammatory Bronchodilator Antimicrob Act Seeds Luffa Cylind 1:11–22

Google Scholar 

Parkash A, Ng TB, Tso WW (2002) Isolation and characterization of luffacylin, a ribosome inactivating peptide with anti-fungal activity from sponge gourd (Luffa cylindrica) seeds. Peptides 23:1019–1024. https://doi.org/10.1016/S0196-9781(02)00045-1

Article  CAS  PubMed  Google Scholar 

Ng TB, Wong RN, Yeung HW (1992) Two proteins with ribosome-inactivating, cytotoxic and abortifacient activities from seeds of Luffa cylindrica roem (Cucurbitaceae). Biochem Int 27:197–207

CAS  PubMed  Google Scholar 

Ng Y-M, Yang Y, Sze K-H et al (2011) Structural characterization and anti-HIV-1 activities of arginine/glutamate-rich polypeptide Luffin P1 from the seeds of sponge gourd (Luffa cylindrica). J Struct Biol 174:164–172. https://doi.org/10.1016/j.jsb.2010.12.007

Article  CAS  PubMed  Google Scholar 

Partap S, Kumar A, Sharma K, Jha KK (2012) Luffa Cylindrica : An important medicinal plant. J Nat Prod Plant Resour 2012:127–134

Google Scholar 

Graßmann J (2005) Terpenoids as plant antioxidants. Vitam Horm. https://doi.org/10.1016/S0083-6729(05)72015-X

Article  PubMed  Google Scholar 

Michalak M (2022) Plant-derived antioxidants: significance in skin health and the ageing process. Int J Mol Sci 23:585. https://doi.org/10.3390/ijms23020585

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hajam YA, Rani R, Ganie SY et al (2022) Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells 11:552. https://doi.org/10.3390/cells11030552

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forrester SJ, Kikuchi DS, Hernandes MS et al (2018) Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 122:877–902. https://doi.org/10.1161/CIRCRESAHA.117.311401

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodríguez-Martínez E, Martínez F, Espinosa-García MT et al (2013) Mitochondrial dysfunction in the hippocampus of rats caused by chronic oxidative stress. Neuroscience 252:384–395. https://doi.org/10.1016/j.neuroscience.2013.08.018

Article  CAS  PubMed  Google Scholar 

Velázquez-Pérez R, Rodríguez-Martínez E, Valdés-Fuentes M et al (2021) Oxidative stress caused by ozone exposure induces changes in P2X7 receptors, neuroinflammation, and neurodegeneration in the rat hippocampus. Oxid Med Cell Longev 2021:1–12. https://doi.org/10.1155/2021/3790477

Article  CAS  Google Scholar 

Yadav S, Batra J (2015) Mechanism of anti-HIV activity of ribosome inactivating protein, saporin. Protein Pept Lett 22:497–503. https://doi.org/10.2174/0929866522666150428120701

Article  CAS  PubMed  Google Scholar 

As S, Vellapandian C (2022) Phytochemical studies, antioxidant potential, and identification of bioactive compounds using GC–MS of the ethanolic extract of Luffa cylindrica (L.) fruit. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-022-03961-1

Article  Google Scholar 

Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q (2022) Alzheimer’s disease: epidemiology and clinical progression. Neurol Ther 11:553–569. https://doi.org/10.1007/s40120-022-00338-8

Article  PubMed  PubMed Central  Google Scholar 

Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11:111–128. https://doi.org/10.31887/DCNS.2009.11.2/cqiu

Article  PubMed  PubMed Central  Google Scholar 

Schneider LS (2000) A critical review of cholinesterase inhibitors as a treatment modality in Alzheimer’s disease. Dialogues Clin Neurosci 2:111–128. https://doi.org/10.31887/DCNS.2000.2.2/lschneider

Article  Google Scholar 

Moreira NCDS, Lima JEBDF, Marchiori MF et al (2022) Neuroprotective effects of cholinesterase inhibitors: current scenario in therapies for Alzheimer’s disease and future perspectives. J Alzheimer’s Dis Rep 6:177–193. https://doi.org/10.3233/ADR-210061

Article  Google Scholar 

Bai R, Guo J, Ye X-Y et al (2022) Oxidative stress: the core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res Rev 77:101619. https://doi.org/10.1016/j.arr.2022.101619

Article  CAS  PubMed  Google Scholar 

Patel SB, Attar UA, Sakate DM, Ghane SG (2020) Efficient extraction of cucurbitacins from Diplocyclos palmatus (L.) C. Jeffrey: optimization using response surface methodology, extraction methods and study of some important bioactivities. Sci Rep 10:2109. https://doi.org/10.1038/s41598-020-58924-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alhakmani F, Kumar S, Khan SA (2013) Estimation of total phenolic content, in-vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera. Asian Pac J Trop Biomed 3:623–627. https://doi.org/10.1016/S2221-1691(13)60126-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouchelaghem S, Das S, Naorem RS et al (2022) Evaluation of total phenolic and flavonoid contents, antibacterial and antibiofilm activities of hungarian propolis ethanolic extract against Staphylococcus aureus. Molecules 27:574. https://doi.org/10.3390/molecules27020574

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naz S, Alam S, Ahmed W et al (2022) Therapeutic potential of selected medicinal plant extracts against multi-drug resistant Salmonella enterica serovar Typhi. Saudi J Biol Sci 29:941–954. https://doi.org/10.1016/j.sjbs.2021.10.008

Article  CAS  PubMed  Google Scholar 

Sharifi-Rad M, Pohl P, Epifano F et al (2022) Teucrium polium (L.): phytochemical screening and biological activities at different phenological stages. Molecules 27:1561. https://doi.org/10.3390/molecules27051561

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen M, He X, Sun H et al (2022) Phytochemical analysis, UPLC-ESI-Orbitrap-MS analysis, biological activity, and toxicity of extracts from Tripleurospermum limosum (Maxim.) Pobed. Arab J Chem 15:103797. https://doi.org/10.1016/j.arabjc.2022.103797

Article  CAS  Google Scholar 

Sreedhar V, Reddenna L, Rajavardhana T et al (2022) Phytochemical composition of Nigella sativa extract as potential source for inhibiting β-amyloid aggregation: significance to Alzheimer’s disease. J Pharm Sci Res 14:689–696

CAS  Google Scholar 

Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

Article  PubMed  PubMed Central  Google Scholar 

Wu X, Li W, Luo Z, Chen Y (2022) The molecular mechanism of Ligusticum wallichii for improving idiopathic pulmonary fibrosis. Medicine 101:e28787. https://doi.org/10.1097/MD.0000000000028787

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu D, Ran S, Yang S et al (2022) Network pharmacology research of Chuanxiong Rhizoma-Acori Tatarinowii Rhizoma in the treatment of vascular dementia. Aging Commun 4:6. https://doi.org/10.53388/AGING202204006

Article  Google Scholar 

Xiang C, Liao Y, Chen Z et al (2022) Network pharmacology and molecular docking to elucidate the potential mechanism of Ligusticum Chuanxiong against osteo

留言 (0)

沒有登入
gif