Efficiency determination of J-PET: first plastic scintillators-based PET scanner

Alavi A, Werner TJ, Stępień E, Moskal P. Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. Bio Algorithms Med Syst. 2021;17(4):203–12.

Article  Google Scholar 

Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys. 2020;7(1):1–33.

Article  Google Scholar 

Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the explorer total-body PET scanner. J Nucl Med. 2019;60(3):299–303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karp JS, Viswanath V, Geagan MJ, Muehllehner G, Pantel AR, Parma MJ, et al. PennPET explorer: Design and preliminary performance of a whole-body imager. J Nucl Med. 2020;61(1):136–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner: An economic total-body PET from plastic scintillators. Phys Med Biol. 2021;66(17):175015. https://doi.org/10.1088/1361-6560/ac16bd.

Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv. 2021;7(42):1–10.

Article  Google Scholar 

Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381):1–4.

Article  Google Scholar 

Vandenberghe S. Progress and perspectives in total body PET systems instrumentation. Bio Algorithms Med Syst. 2021;17(4):265–7.

Article  Google Scholar 

Pantel AR, Viswanath V, Daube-witherspoon ME, Dubroff JG, Muehllehner G, Parma MJ, et al. PennPET explorer: human imaging on a whole-body imager. J Nucl Med. 2020;61(1):144–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alberts I, Hünermund JN, Prenosil G, Mingels C, Bohn KP, Viscione M, et al. Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the Biograph Vision Quadra with the Biograph Vision PET/CT. Eur J Nucl Med Mol Imaging. 2021;48(8):2395–404.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prenosil GA, Sari H, Markus F, Afshar-oromieh A, Shi K, Rominger A, et al. Performance characteristics of the biograph vision quadra PET/CT system with a long axial field of view using the NEMA NU 2–2018 standard. J Nucl Med. 2022;63(3):476–84.

Article  CAS  PubMed  Google Scholar 

Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: Maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moskal P, Stȩpień E. Prospects and clinical perspectives of total-body PET imaging using plastic scintillators. PET Clin. 2020;15(4):439–52.

Article  PubMed  Google Scholar 

Majewski S. Perspectives of brain imaging with PET systems. Bio-Algorithms Med Syst. 2021;17(4):269–91.

Article  Google Scholar 

Efthimiou N. New challenges for PET image reconstruction for total-body imaging. PET Clin. 2020;15(4):453–61. https://doi.org/10.1016/j.cpet.2020.06.002.

Article  PubMed  Google Scholar 

Spencer BA, Berg E, Schmall JP, Omidvari N, Leung EK, Yasser G, et al. Performance Evaluation of the uEXPLORER Total-Body PET/CT Scanner Based on NEMA NU 2–2018 with additional tests to characterize PET scanners with a long axial field of view. J Nucl Med. 2019;62(6):861–70.

Article  Google Scholar 

Gonzalez-Montoro A, Sanchez F, Majewski S, Zanettini S, Benlloch JM, Gonzalez AJ. Highly improved operation of monolithic BGO-PET blocks. J Instrum. 2017;12(11):1–8.

Article  Google Scholar 

Zhang Y, Wong W. System design studies for a low-cost high-resolution BGO PET with 1-meter axial field of view. J Nucl Med. 2017;58(suppl.1):221.

Google Scholar 

Karakatsanis NA, Nehmeh MH, Conti M, Bal G, González AJ, Nehmeh SA. Physical performance of adaptive axial FOV PET scanners with a sparse detector block rings or a checkerboard configuration. Phys Med Biol. 2022;67(10):1–18.

Article  Google Scholar 

Moskal P, Salabura P, Silarski M, Smyrski J, Zdebik J, Zieliński M. Novel detector systems for the Positron Emission Tomography. Bio-Algorithms Med Syst. 2011;7(2):73–8.

Google Scholar 

Moskal P, Niedźwiecki S, Bednarski T, Czerwiński E, Kubicz E, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nuclear Instr and Meth in Phys Res A. 2014;764:317–21.

Article  CAS  Google Scholar 

Moskal P, Rundel O, Alfs D, Bednarski T, Białas P, Czerwiński E, et al. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys Med Biol. 2016;61(5):2025–47.

Article  CAS  PubMed  Google Scholar 

Raczyński L, Wiślicki W, Krzemień W, Kowalski P, Alfs D, Bednarski T, et al. Calculation of the time resolution of the J-PET tomograph using kernel density estimation. Phys Med Biol. 2017;62(12):5076–97.

Article  PubMed  Google Scholar 

Moskal P, Zoń N, Bednarski T, Białas P, Czerwiński E, Gajos A, et al. A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals. Nucl Inst Methods Phys Res A. 2015;775:54–62.

Article  CAS  Google Scholar 

Kowalski P, Wiślicki W, Shopa RY, Raczyński L, Klimaszewski K, Curcenau C, et al. Estimating the NEMA characteristics of the J-PET tomograph using the GATE package. Phys Med Biol. 2018;63(16):165008. https://doi.org/10.1088/1361-6560/aad29b.

Niedźwiecki S, Białas P, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. J-PET: a new technology for the whole\(-\)body PET imaging. Acta Phys Pol B. 2017;48(10):1567–76.

Article  Google Scholar 

Sharma S, Chhokar J, Curceanu C, Czerwiński E, Dadgar M, Dulski K, et al. Estimating relationship between the time over threshold and energy loss by photons in plastic scintillators used in the J-PET scanner. EJNMMI Phys. 2020;7(1):1–5.

Article  CAS  Google Scholar 

Watts D, Bordes J, Brown JA, Cherlin A, Newton R, Alison J, et al. Photon quantum entanglement in the MeV regime and its application in PET imaging. Nat Commun. 2021;12(2646):1–9.

Google Scholar 

McNamara AL, Toghyani M, Gillam JE, Wu K, Kuncic Z. Towards optimal imaging with PET: an in silico feasibility study. Phys Med Biol. 2014;59(24):7587–600.

Article  CAS  PubMed  Google Scholar 

Toghyani M, Gillam JE, McNamara AL, Kuncic Z. Polarisation-based coincidence event discrimination: an in silico study towards a feasible scheme for Compton-PET. Phys Med Biol. 2016;61(15):5803–17.

Article  CAS  PubMed  Google Scholar 

Parashari S, Bokulić T, Bosnar D, Kožuljević AM, Kuncic Z, Žugec P, et al. Optimization of detector modules for measuring gamma-ray polarization in Positron Emission Tomography. Nucl Instrum Methods Phys Res Sect A. 2022;1040(June):167186.

Article  CAS  Google Scholar 

Tashima H, Yamaya T. Compton imaging for medical applications. Radiol Phys Technol. 2022;15(3):187–205.

Article  PubMed  Google Scholar 

Parodi K, Yamaya T, Moskal P. Experience and new prospects of PET imaging for ion beam therapy monitoring. Z fuer Med Phys. 2022;33(1):22–34. https://doi.org/10.1016/j.zemedi.2022.11.001.

Uenomachi M, Shimazoe K, Takahashi H. A double photon coincidence detection method for medical gamma-ray imaging. Bio Algorithms Med Syst. 2022;18(1):120–6.

Article  Google Scholar 

Shimazoe K, Uenomachi M. Multi-molecule imaging and inter-molecular imaging in nuclear medicine. Bio Algorithms Med Syst. 2022;18(1):127–34.

Article  Google Scholar 

Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C, et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun. 2021;12(1):1–9.

Article  Google Scholar 

Moskal P, Jasińska B, Stȩpień E, Bass SD. Positronium in medicine and biology. Nat Rev Phys. 2019;1(9):527–9.

Article  Google Scholar 

Moskal P, Stȩpień E. Positronium as a biomarker of hypoxia. Bio-Algorithms Med Syst. 2021;17(4):311–9.

Article  Google Scholar 

Dulski K, Bass SD, Chhokar J, Chug N, Curceanu C, Czerwiński E, et al. The J-PET detector: a tool for precision studies of ortho-positronium decays. Nucl Instrum Methods Phys Res Sect A. 2021;1008(May):165452.

Article  CAS  Google Scholar 

Kapłon Ł. Technical attenuation length measurement of plastic scintillator strips for the total-body J-PET scanner. IEEE Trans Nucl Sci. 2020;67(10):2286–9.

Article  Google Scholar 

Moskal P, Bednarski T, Niedzwiecki S, Silarski M, Czerwiński E, Kozik T, et al. Synchronization and calibration of the 24-modules J-PET prototype with 300-mm axial field of view. IEEE Trans Instrum Meas. 2021;70:2000810.

Article  CAS  Google Scholar 

Pałka M, Strzempek P, Korcyl G, Bednarski T, Niedźwiecki S, Białas P, et al. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement. J Instrum. 2017;12(8):1–5.

Article  Google Scholar 

Neiser A, Adamczewski-Musch J, Hoek M, Koenig W, Korcyl G, Linev S, et al. TRB3: a 264 channel high precision TDC platform and its applications. J Instrument. 2013;8(12):C12043.

Article  Google Scholar 

Traxler M, Bayer E, Kajetanowicz M, Korcyl G, Maier L, Michel J, et al. A compact system for high precision time measurements (\(<\) 14 ps RMS) and integrated data acquisition for a large number of channels. J Instrument. 2011;6(12):C12004.

Article  Google Scholar 

Won JY, Lee JS. Time-to-digital converter using a tuned-delay. IEEE Trans Instrum Meas. 2016;65(7):1678–89.

Article  Google Scholar 

Won JY, Kwon SI, Yoon HS, Ko GB, Son JW, Lee JS. Dual-phase tapped-delay-line time-to-digital converter with on-the-fly calibration implemented in 40 nm FPGA. IEEE Trans Biomed Circuits Syst. 2016;10(1):231–42.

留言 (0)

沒有登入
gif