Activation of AMPK promotes cardiac differentiation by stimulating the autophagy pathway

Adey AC (2019) Integration of single-cell genomics datasets. Cell 177(7):1677–1679. https://doi.org/10.1016/j.cell.2019.05.034

Article  CAS  PubMed  Google Scholar 

Aguilar-Sanchez C, Michael M, Pennings S (2018) Cardiac stem cells in the postnatal heart: lessons from development. Stem Cells Int 2018:1247857. https://doi.org/10.1155/2018/1247857

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arad M, Seidman CE, Seidman JG (2007) AMP-activated protein kinase in the heart: role during health and disease. Circ Res 100(4):474–488. https://doi.org/10.1161/01.RES.0000258446.23525.37

Article  CAS  PubMed  Google Scholar 

Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

Article  CAS  PubMed  PubMed Central  Google Scholar 

Athar A, Füllgrabe A, George N et al (2019) ArrayExpress update–from bulk to single-cell expression data. Nucleic Acids Res 47(D1):D711–D715. https://doi.org/10.1093/nar/gky964

Article  CAS  PubMed  Google Scholar 

Aymard E, Barruche V, Naves T, Bordes S, Closs B, Verdier M, Ratinaud M-H (2011) Autophagy in human keratinocytes: an early step of the differentiation? Exp Dermatol 20(3):263–268. https://doi.org/10.1111/j.1600-0625.2010.01157.x

Article  CAS  PubMed  Google Scholar 

Baharvand H, Kazemi Ashtiani S, Taee A, Massumi M, Valojerdi MR, Yazdi PE, Moradi SZ, Farrokhi A (2006) Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Dev Growth Differ 48(2):117–128. https://doi.org/10.1111/j.1440-169X.2006.00851.x

Article  PubMed  Google Scholar 

Brandt EB, Li X, Nelson TJ (2021) Activation of P53 via nutlin-3a reveals role for P53 in ROS signaling during cardiac differentiation of hiPSCs. J Stem Cell Rep 3(1):101

PubMed  PubMed Central  Google Scholar 

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36(5):411–420. https://doi.org/10.1038/nbt.4096

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carbon S, Ireland A, Mungall CJ, Shu SQ, Marshall B, Lewis S (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25(2):288–289. https://doi.org/10.1093/bioinformatics/btn615

Article  CAS  PubMed  Google Scholar 

Chen A, Ting S, Seow J, Reuveny S, Oh S (2014) Considerations in designing systems for large scale production of human cardiomyocytes from pluripotent stem cells. Stem Cell Res Ther 5(1):12. https://doi.org/10.1186/scrt401

Article  PubMed  PubMed Central  Google Scholar 

Chen X, He Y, Lu F (2018) Autophagy in stem cell biology: a perspective on stem cell self-renewal and differentiation. Stem Cells Int 2018:9131397. https://doi.org/10.1155/2018/9131397

Article  CAS  PubMed  PubMed Central  Google Scholar 

Churko JM, Garg P, Treutlein B et al (2018) Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat Commun 9(1):4906. https://doi.org/10.1038/s41467-018-07333-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cianfanelli V, Fuoco C, Lorente M et al (2015) AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol 17(1):20–30. https://doi.org/10.1038/ncb3072

Article  CAS  PubMed  Google Scholar 

Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5(6):527–549. https://doi.org/10.1016/j.chom.2009.05.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dolinsky VW, Dyck JR (2006) Role of AMP-activated protein kinase in healthy and diseased hearts. Am J Physiol Heart Circ 291(6):H2557–H2569. https://doi.org/10.1152/ajpheart.00329.2006

Article  CAS  Google Scholar 

Eskelinen EL (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med 27(5–6):495–502. https://doi.org/10.1016/j.mam.2006.08.005

Article  CAS  PubMed  Google Scholar 

Feng Y, Zhang Y, Xiao H (2018) AMPK and cardiac remodeling. Sci China Life Sci 61(1):14–23. https://doi.org/10.1007/s11427-017-9197-5

Article  CAS  PubMed  Google Scholar 

Fonoudi H, Ansari H, Abbasalizadeh S et al (2015) A universal and robust integrated platform for the scalable production of human cardiomyocytes from pluripotent stem cells. Stem Cells Transl Med 4(12):1482–1494. https://doi.org/10.5966/sctm.2014-0275

Article  PubMed  PubMed Central  Google Scholar 

Fonoudi H, Ansari H, Abbasalizadeh S, Blue GM, Aghdami N, Winlaw DS, Harvey RP, Bosman A, Baharvand H (2016) Large-scale production of cardiomyocytes from human pluripotent stem cells using a highly reproducible small molecule-based differentiation protocol. J vis Exp 113:54276. https://doi.org/10.3791/54276

Article  CAS  Google Scholar 

Friedman CE, Nguyen Q, Lukowski SW et al (2018) Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation. Cell Stem Cell 23(4):586–598. https://doi.org/10.1016/j.stem.2018.09.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao C, Cao W, Bao L et al (2010) Autophagy negatively regulates Wnt signaling by promoting Dishevelled degradation. Nat Cell Biol 12(8):781–790. https://doi.org/10.1038/ncb2082

Article  CAS  PubMed  Google Scholar 

Guan J-L, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A, Zhang J (2013) Autophagy in stem cells. Autophagy 9(6):830–849. https://doi.org/10.4161/auto.24132

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gump JM, Thorburn A (2011) Autophagy and apoptosis: what is the connection? Trends Cell Biol 21(7):387–392. https://doi.org/10.1016/j.tcb.2011.03.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226. https://doi.org/10.1016/j.molcel.2008.03.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Habib M, Caspi O, Gepstein L (2008) Human embryonic stem cells for cardiomyogenesis. J Mol Cell Cardiol 45(4):462–474. https://doi.org/10.1016/j.yjmcc.2008.08.008

Article  CAS  PubMed  Google Scholar 

Hadjal Y, Hadadeh O, Yazidi CEI, Barruet E, Binétruy B (2013) A p38MAPK-p53 cascade regulates mesodermal differentiation and neurogenesis of embryonic stem cells. Cell Death Dis 4(7):e737–e737. https://doi.org/10.1038/cddis.2013.246

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han H, Shim H, Shin D et al (2015) TRRUST: a reference database of human transcriptional regulatory interactions. Sci Rep 5:11432. https://doi.org/10.1038/srep11432

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han H, Cho J-W, Lee S et al (2018) TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res 46(D1):D380–D386. https://doi.org/10.1093/nar/gkx1013

Article  CAS  PubMed  Google Scholar 

Hassanpour M, Cheraghi O, Rahbarghazi R, Nouri M (2021) Autophagy stimulation delayed biological aging and decreased cardiac differentiation in rabbit mesenchymal stem cells. J Cardiovasc Thorac Res 13(3):234. https://doi.org/10.34172/jcvtr.2021.43

Article  PubMed  PubMed Central  Google Scholar 

Hermeking H, Eick D (1994) Mediation of c-Myc-induced apoptosis by p53. Science 265(5181):2091–2093. https://doi.org/10.1126/science.8091232

Article  CAS  PubMed  Google Scholar 

Ho TT, Warr MR, Adelman ER, Lansinger OM, Flach J, Verovskaya EV, Figueroa ME, Passegué E (2017) Autophagy maintains the metabolism and function of young and old stem cells. Nature 543(7644):205–210. https://doi.org/10.1038/nature21388

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hodgkinson CP, Pratt RE, Kirste I, Dal-Pra S, Cooke JP, Dzau VJ (2018) Cardiomyocyte maturation requires TLR3 activated nuclear factor kappa B. Stem Cells 36(8):1198–1209. https://doi.org/10.1002/stem.2833

Article  CAS  PubMed  Google Scholar 

Hohenstein P, Hastie ND (2006) The many facets of the Wilms’ tumour gene, WT1. Hum Mol Genet 15(suppl_2):R196–R201. https://doi.org/10.1093/hmg/ddl196

Article  CAS  PubMed  Google Scholar 

Hwang S-L, Jeong Y-T, Li X, Kim YD, Lu Y, Chang Y-C, Lee I-K, Chang HW (2013) Inhibitory cross-talk between the AMPK and ERK pathways mediates endoplasmic reticulum stress-induced insulin resistance in skeletal muscle. Br J Pharmacol 169(1):69–81. https://doi.org/10.1111/bph.12124

Article  CAS

留言 (0)

沒有登入
gif