AMPK targets a proto-oncogene TPD52 (isoform 3) expression and its interaction with LKB1 suppress AMPK-GSK3β signaling axis in prostate cancer

Beard H, Cholleti A, Pearlman D, Sherman W, Loving KA (2013) Applying physics-based scoring to calculate free energies of binding for single amino acid mutations in protein-protein complexes. PloS One 8(12):e82849. https://doi.org/10.1371/journal.pone.0082849

Article  CAS  PubMed  PubMed Central  Google Scholar 

Byrne JA, Tomasetto C, Garnier JM, Rouyer N, Mattei MG, Bellocq JP, Rio MC, Basset P (1995) A screening method to identify genes commonly overexpressed in carcinomas and the identification of a novel complementary DNA sequence. Can Res 55(13):2896–2903

CAS  Google Scholar 

Byrne JA, Mattei M-G, Basset P (1996) Definition of the tumor protein D52 (TPD52) gene family through cloning of D52Homologues in human (hD53) and mouse (mD52). Genomics 35(3):523–532. https://doi.org/10.1006/geno.1996.0393

Article  CAS  PubMed  Google Scholar 

Byrne JA, Balleine RL, Fejzo MS, Mercieca J, Chiew YE, Livnat Y, Heaps L, Peters GB, Byth K, Karlan BY, Slamon DJ (2005) Tumor protein D52 (TPD52) is overexpressed and a gene amplification target in ovarian cancer. Int J Can 117(6):1049–1054. https://doi.org/10.1002/ijc.21250

Article  CAS  Google Scholar 

Byrne JA, Frost S, Chen Y, Bright RK (2014) Tumor protein D52 (TPD52) and cancer—oncogene understudy or understudied oncogene? Tumor Biology 35(8):7369–7382. https://doi.org/10.1007/s13277-014-2006-x

Article  CAS  PubMed  Google Scholar 

Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66(1):12–21. https://doi.org/10.1107/S0907444909042073

Article  CAS  PubMed  Google Scholar 

Chen Y, Peng C, Tan W, Yu J, Zayas J, Peng Y, Lou Z, Pei H, Wang L (2022) Tumor protein D52 (TPD52) affects cancer cell metabolism by negatively regulating AMPK. Cancer Med. https://doi.org/10.1002/cam4.4911

Article  PubMed  PubMed Central  Google Scholar 

Cowan-Jacob SW, Jahnke W, Knapp S (2014) Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Med Chem 6(5):541–561. https://doi.org/10.4155/fmc.13.216

Article  CAS  PubMed  Google Scholar 

Dasari C, Yaghnam DP, Walther R, Ummanni R (2017) Tumor protein D52 (isoform 3) contributes to prostate cancer cell growth via targeting nuclear factor-κB transactivation in LNCaP cells. Tumor Biology 39(5):1010428317698382. https://doi.org/10.1177/1010428317698382

Article  CAS  PubMed  Google Scholar 

Dasari C, Reddy K, Natani S, Murthy T, Bhukya S, Ummanni R (2019) Tumor protein D52 (isoform 3) interacts with and promotes peroxidase activity of Peroxiredoxin 1 in prostate cancer cells implicated in cell growth and migration. Biochim Biophys Acta (BBA) Mol Cell Res 1866(8):1298–309

Dauter M, Dauter Z (2011) Deprotonated imidodiphosphate in AMPPNP-containing protein structures. Acta Crystall Sect D Biolog Crystall 67(12):1073–1075. https://doi.org/10.1107/S0907444911046105

Article  CAS  Google Scholar 

El-Masry OS, Al-Sakkaf K, Brown BL, Dobson PR (2015) Differential crosstalk between the AMPK and PI3K/Akt pathways in breast cancer cells of differing genotypes: Leptin inhibits the effectiveness of AMPK activation. Oncol Rep 34(4):1675–1680. https://doi.org/10.3892/or.2015.4198

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, Mamer OA (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17(1):113–124. https://doi.org/10.1016/j.cmet.2012.12.001

Article  CAS  PubMed  Google Scholar 

Fogarty S, Hawley SA, Green KA, Saner N, Mustard KJ, Hardie DG (2010) Calmodulin-dependent protein kinase kinase-β activates AMPK without forming a stable complex: synergistic effects of Ca2+ and AMP. Biochem J 426(1):109–118. https://doi.org/10.1042/BJ20091372

Article  CAS  PubMed  Google Scholar 

Garner LA, Janda DK (2011) Protein-protein interactions and cancer: targeting the central dogma. Curr Top Med Chem 11(3):258–80. https://doi.org/10.2174/156802611794072614

Article  CAS  PubMed  Google Scholar 

Gollavilli PN, Kanugula AK, Koyyada R, Karnewar S, Neeli PK, Kotamraju S (2015) AMPK inhibits MTDH expression via GSK 3β and SIRT 1 activation: potential role in triple negative breast cancer cell proliferation. FEBS J 282(20):3971–3985. https://doi.org/10.1111/febs.13391

Article  CAS  PubMed  Google Scholar 

Green AS, Chapuis N, Trovati Maciel T, Willems L, Lambert M, Arnoult C, Boyer O, Bardet V, Park S, Foretz M, Viollet B (2010) The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood 116(20):4262–4273. https://doi.org/10.1182/blood-2010-02-269837

Article  CAS  PubMed  Google Scholar 

Han D, Li S-J, Zhu Y-T, Liu L, Li M-X (2013) LKB1/AMPK/mTOR signaling pathway in non-small-cell lung cancer. Asian Pac J Cancer Prev 14(7):4033–4039. https://doi.org/10.7314/apjcp.2013.14.7.4033

Article  PubMed  Google Scholar 

Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262. https://doi.org/10.1038/nrm3311

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J (2020) Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 47(6):4587–4629. https://doi.org/10.1016/j.bbrc.2003.07.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan AS, Frigo DEA (2017) Spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer. Nat Rev Urol 14(3):164–180. https://doi.org/10.1038/nrurol.2016.272

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang J, Mills GB (2013) AMPK: A Contextual Oncogene or Tumor Suppressor? AMPK Regul Can Metabol Can Res 73(10):2929–2935. https://doi.org/10.1158/0008-5472.CAN-12-3876

Article  CAS  Google Scholar 

Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Mäkelä TP, Hardie DG, Alessi DR (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23(4):833–843. https://doi.org/10.1038/sj.emboj.7600110

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo Z, Zang M, Guo W (2010) AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol 6(3):457–470. https://doi.org/10.7314/apjcp.2013.14.7.4033

Article  CAS  PubMed  Google Scholar 

Mancinelli R, Carpino G, Petrungaro S, Mammola CL, Tomaipitinca L, Filippini A, Facchiano A, Ziparo E, Giampietri C (2017) Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxidat Med Cell Longev. https://doi.org/10.1155/2017/4629495

Article  Google Scholar 

Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y, Suzuki K, Nakamoto M, Shimizu E, Minna JD, Yokota J (2007) Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 26(40):5911–5918. https://doi.org/10.1038/sj.onc.1210418

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mehenni H, Gehrig C, Nezu JI, Oku A, Shimane M, Rossier C, Guex N, Blouin JL, Scott HS, Antonarakis SE (1998) Loss of LKB1 kinase activity in Peutz-Jeghers syndrome, and evidence for allelic and locus heterogeneity. Am J Human Genet 63(6):1641–1650. https://doi.org/10.1086/302159

Article  CAS  Google Scholar 

Meijer AJ, Dubbelhuis PF (2004) Amino acid signalling and the integration of metabolism. Biochem Biophys Res Commun 313(2):397–403. https://doi.org/10.1016/j.bbrc.2003.07.012

Article  CAS  PubMed  Google Scholar 

Mirouse V, Billaud M (2011) The LKB1/AMPK polarity pathway. FEBS Lett 585(7):981–985. https://doi.org/10.1016/j.febslet.2010.12.025

Article  CAS  PubMed  Google Scholar 

Moritz T, Venz S, Junker H, Kreuz S, Walther R, Zimmermann U (2016) Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells. Tumor Biol 37(8):10435–10446. https://doi.org/10.1007/s13277-016-4925-1

Article  CAS  Google Scholar 

Payton LA, Lewis JD, Byrne JA, Bright RK (2008) Vaccination with metastasis-related tumor associated antigen TPD52 and CpG/ODN induces protective tumor immunity. Cancer Immunol Immunother 57(6):799–811. https://doi.org/10.1007/s00262-007-0416-y

Article  CAS  PubMed  Google Scholar 

Pineda CT, Ramanathan S, Tacer KF, Weon JL, Potts MB, Ou YH, White MA, Potts PR (2015) Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160(4):715–728. https://doi.org/10.1016/j.cell.2015.01.034

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rae C, Mairs RJ (2019) AMPK activation by AICAR sensitizes prostate cancer cells to radiotherapy. Oncotarget 10(7):749–759. https://doi.org/10.18632/oncotarget.26598

Article  PubMed  PubMed Central  Google Scholar 

Reddy KR, Dasari C, Duscharla D, Supriya B, Ram NS, Surekha MV, Kumar JM, Ummanni R (2018) Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is frequently upregulated in prostate cancer, and its overexpression conveys tumor growth and angiogenesis by metabolizing asymmetric dimethylarginine (ADMA). Angiogenesis 21(1):79–94. https://doi.org/10.1007/s10456-017-9587-0

Article  CAS  PubMed  Google Scholar 

Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM (2002) Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Can Res 62(15):4427–4433

CAS  Google Scholar 

Ross-Adams H, Lamb AD, Dunning MJ, Halim S, Lindberg J, Massie CM, Egevad LA, Russell R, Ramos-Montoya A, Vowler SL, Sharma NL (2015) Integration

留言 (0)

沒有登入
gif