Z-REX: shepherding reactive electrophiles to specific proteins expressed tissue specifically or ubiquitously, and recording the resultant functional electrophile-induced redox responses in larval fish

Lim, W., Mayer, B., Pawson, T. Cell Signaling: Principles and Mechanisms (Taylor & Francis, 2015).

Murphy, H. C. The use of whole animals versus isolated organs or cell culture in research. Trans. Nebr. Acad. Sci. Aff. Soc. XVIII, 105–108 (1991).

Article  Google Scholar 

Verdin, E. & Ott, M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258–264 (2015).

Article  CAS  PubMed  Google Scholar 

Chen, Z. & Cole, P. A. Synthetic approaches to protein phosphorylation. Curr. Opin. Chem. Biol. 28, 115–122 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komander, D. & Rape, M. The ubiquitin code. Ann. Rev. Biochem. 81, 203–229 (2012).

Article  CAS  PubMed  Google Scholar 

Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banerjee, R., Becker, D.F., Dickman, M.B., Gladyshev, V.N. & Ragsdale, S.W. (eds.) Redox Biochemistry (John Wiley & Sons, 2008).

Schopfer, F. J., Cipollina, C. & Freeman, B. A. Formation and signaling actions of electrophilic lipids. Chem. Rev. 111, 5997–6021 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacobs, A. T. & Marnett, L. J. Systems analysis of protein modification and cellular responses induced by electrophile stress. Acc. Chem. Res. 43, 673–683 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parvez, S., Long, M. J. C., Poganik, J. R. & Aye, Y. Redox signaling by reactive electrophiles and oxidants. Chem. Rev. 118, 8798–8888 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).

Article  CAS  PubMed  Google Scholar 

Wang, C., Weerapana, E., Blewett, M. M. & Cravatt, B. F. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat. Methods 11, 79–85 (2014).

Article  PubMed  Google Scholar 

Yang, J., Tallman, K. A., Porter, N. A. & Liebler, D. C. Quantitative chemoproteomics for site-specific analysis of protein alkylation by 4-hydroxy-2-nonenal in cells. Anal. Chem. 87, 2535–2541 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, Y. et al. Function-guided proximity mapping unveils electrophilic-metabolite sensing by proteins not present in their canonical locales. Proc. Natl Acad. Sci. USA 119, e2120687119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, Y., Long, M. J. C., Wang, Y., Zhang, S. & Aye, Y. Ube2V2 is a Rosetta Stone bridging redox and ubiquitin codes, coordinating DNA damage responses. ACS Cent. Sci. 4, 246–259 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eaton, P., Li, J.-M., Hearse, D. J. & Shattock, M. J. Formation of 4-hydroxy-2-nonenal-modified proteins in ischemic rat heart. Am. J. Physiol. 276, H935–H943 (1999).

CAS  PubMed  Google Scholar 

Roehlecke, C. et al. Stress reaction in outer segments of photoreceptors after blue light irradiation. PLoS ONE 8, e71570 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dalleau, S., Baradat, M., Gueraud, F. & Huc, L. Cell death and diseases related to oxidative stress:4-hydroxynonenal (HNE) in the balance. Cell Death Differ. 20, 1615–1630 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rudolph, T. K. & Freeman, B. A. Transduction of redox signaling by electrophile-protein reactions. Sci. Signal. 2, re7 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Poganik, J. R. & Aye, Y. Electrophile signaling and emerging immuno- and neuro-modulatory electrophilic pharmaceuticals. Front. Aging Neurosci. 12, 1 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, X., Long, M. J. C. & Aye, Y. Proteomics and beyond: cell decision-making shaped by reactive electrophiles. Trends Biochem. Sci. 44, 75–89 (2019).

Article  CAS  PubMed  Google Scholar 

Long, M. J. C. & Aye, Y. Privileged electrophile sensors: a resource for covalent drug development. Cell Chem. Biol. 24, 787–800 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, X. et al. Precision Targeting of pten-null triple-negative breast tumors guided by electrophilic metabolite sensing. ACS Cent. Sci. 6, 892–902 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long, M. J., Liu, X. & Aye, Y. Genie in a bottle: controlled release helps tame natural polypharmacology? Curr. Opin. Chem. Biol. 51, 48–56 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parvez, S. et al. T-REX on-demand redox targeting in live cells. Nat. Protoc. 11, 2328–2356 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long, M. J. C., Rogg, C. & Aye, Y. An oculus to profile and probe target engagement in vivo: how T-REX was born and its evolution into G-REX. Acc. Chem. Res. 54, 618–631 (2021).

Article  CAS  PubMed  Google Scholar 

Poganik, J. R. et al. Wdr1 and cofilin are necessary mediators of immune-cell-specific apoptosis triggered by Tecfidera. Nat. Commun. 12, 5736 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poganik, J. R. et al. Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1. FASEB J. 33, 14636–14652 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Surya, S. L. et al. Cardiovascular small heat shock protein HSPB7 is a kinetically privileged reactive electrophilic species (RES) sensor. ACS Chem. Biol. 13, 1824–1831 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long, M. J. et al. Akt3 is a privileged first responder in isozyme-specific electrophile response. Nat. Chem. Biol. 13, 333–338 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parvez, S. et al. Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response. J. Am. Chem. Soc. 137, 10–13 (2015).

Article  CAS  PubMed  Google Scholar 

Long, M. J. et al. β-TrCP1 Is a vacillatory regulator of Wnt aignaling. Cell Chem. Biol. 24, 944–957.e947 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

MacRae, C. A. & Peterson, R. T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 14, 721–731 (2015).

Article  CAS  PubMed  Google Scholar 

Lin, H.-Y., Haegele, J. A., Disare, M. T., Lin, Q. & Aye, Y. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling. J. Am. Chem. Soc. 137, 6232–6244 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bryan, H. K., Olayanju, A., Goldring, C. E. & Park, B. K. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem. Pharmacol. 85, 705–717 (2013).

Article  CAS  PubMed  Google Scholar 

Schartl, M. Beyond the zebrafish: diverse fish species for modeling human disease. Dis. Model. Mech. 7, 181–192 (2014).

PubMed  Google Scholar 

Long, M. J. C., Zhao, Y. & Aye, Y. Neighborhood watch: tools for defining locale-dependent subproteomes and their contextual signaling activities. RSC Chem. Biol. 1, 42–55 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayes, J. D. & Dinkova-Kostova, A. T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39, 199–218 (2014).

留言 (0)

沒有登入
gif