Autoregulation: mediators and renin–angiotensin system in diseases and treatments

Vaughan CJ, Delanty N (2000) Hypertensive emergencies. The Lancet 356(9227):411–417

Article  CAS  Google Scholar 

Carlson BE, Arciero JC, Secomb TW (2008) Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am J Physiol Heart Circulat Physiol 295(4):H1572–H1579

Article  CAS  Google Scholar 

Dole WP (1987) Autoregulation of the coronary circulation. Prog Cardiovasc Dis 29(4):293–323

Article  CAS  PubMed  Google Scholar 

Dautzenberg M, Keilhoff G, Just A (2011) Modulation of the myogenic response in renal blood flow autoregulation by NO depends on endothelial nitric oxide synthase (eNOS), but not neuronal or inducible NOS. J Physiol 589(19):4731–4744

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xavier FE, Aras-López R, Arroyo-Villa I, Del Campo L, Salaices M, Rossoni LV, Ferrer M, Balfagón G (2008) Aldosterone induces endothelial dysfunction in resistance arteries from normotensive and hypertensive rats by increasing thromboxane A2 and prostacyclin. Br J Pharmacol 154(6):1225–1235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Local Hormones 1: histamine and the biologically active lipids. In: Rang HP (ed) Rang and Dale’s Pharmacology, 9th edn. Elsevier, London.

Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM (2007) Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 49(1):185–192

Article  CAS  PubMed  Google Scholar 

Smyth EM, FitzGerald GA (2012) The eicosanoids: prostaglandins, thromboxanes, eukotrienes, & related compounds. In: Katzung BG (ed) Basic & clinical pharmacology, 12th edn. McGraw Hill Companies, Inc. New York.

Tilley SL, Coffman TM, Koller BH (2001) Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J Clin Investig 108(1):15–23

Article  CAS  PubMed  PubMed Central  Google Scholar 

Epstein M (2002) Non-steroidal anti-inflammatory drugs and the continuum of renal dysfunction. J Hyperten 20(6):S17–S23

CAS  Google Scholar 

Yu IS, Lin SR, Huang CC, Tseng HY, Huang PH, Shi GY, Wu HL, Tang CL, Chu PH, Wang LH, Wu KK, Lin SW (2004) TXAS-deleted mice exhibit normal thrombopoiesis, defective hemostasis, and resistance to arachidonate-induced death. Blood 104(1):135–142

Article  CAS  PubMed  Google Scholar 

Ozen G, Aljesri K, Abdelazeem H, Norel X, Turkyılmaz G, Turkyılmaz S, Topal G (2021) Comparative study on the effect of aspirin, TP receptor antagonist and TxA2 synthase inhibitor on the vascular tone of human saphenous vein and internal mammary artery. Life Sci 286:120073

Article  CAS  PubMed  Google Scholar 

Linder L, Kiowski W, Bühler FR, Lüscher TF (1990) Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension. Circulation 81(6):1762–1767

Article  CAS  PubMed  Google Scholar 

Blumenthal DK (2018) Pharmacodynamics: molecular mechanisms of drug action. In: Brunton LL (ed) Goodman & Gilman’s the pharmacological basis of therapeutics, 13th edn. McGraw Hill Companies, Inc. New York

Kreisel W, Lazaro A, Trebicka J, Perdekamp MG, Schmitt-Graeff A, Deibert P (2021) Cyclic gmp in liver cirrhosis—role in pathophysiology of portal hypertension and therapeutic implications. Int J Mol Sci 22(19):10372

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bellamy TC, Wood J, Goodwin DA, Garthwaite J (2000) Rapid desensitization of the nitric oxide receptor, soluble guanylyl cyclase, underlies diversity of cellular cGMP responses. Proc Natl Acad Sci 97(6):2928–2933

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falk JA, Philip KJ, Schwarz ER (2010) The emergence of oral tadalafil as a once-daily treatment for pulmonary arterial hypertension. Vascular Health Risk Manag 6:273

CAS  Google Scholar 

Singh J, Lee Y, Kellum JA (2022) A new perspective on NO pathway in sepsis and ADMA lowering as a potential therapeutic approach. Crit Care 26(1):1–8

Article  Google Scholar 

Kedzierski RM, Yanagisawa M (2001) Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol 41(1):851–876

Article  CAS  PubMed  Google Scholar 

Imai T, Hirata Y, Emori, T, Yanagisawa M, Masaki T, Marumo F (1992) Induction of endothelin-1 gene by angiotensin and vasopressin in endothelial cells. Hypertension, 19(6_pt_2), 753–757

Kuc RE, Carlebur M, Maguire JJ, Yang P, Long L, Toshner M, Morrell NW, Davenport AP (2014) Modulation of endothelin receptors in the failing right ventricle of the heart and vasculature of the lung in human pulmonary arterial hypertension. Life Sci 118(2):391–396

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stow LR, Jacobs ME, Wingo CS, Cain BD (2011) Endothelin-1 gene regulation. FASEB J 25(1):16–28

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawanabe Y, Nauli SM (2011) Endothelin. Cell Mol Life Sci 68:195–203

Article  CAS  PubMed  Google Scholar 

Turner AJ, Murphy LJ (1996) Molecular pharmacology of endothelin converting enzymes. Biochem Pharmacol 51(2):91–102

Article  CAS  PubMed  Google Scholar 

Rapoport RM (2014) Nitric oxide inhibition of endothelin-1 release in the vasculature: in vivo relevance of in vitro findings. Hypertension 64(5):908–914

Article  CAS  PubMed  Google Scholar 

Vanderheyden M, Bartunek J, Goethals M (2004) Brain and other natriuretic peptides: molecular aspects. Eur J Heart Fail 6(3):261–268

Article  CAS  PubMed  Google Scholar 

Hall C (2005) NT-ProBNP: the mechanism behind the marker. J Cardiac Fail 11(5):S81–S83

Article  CAS  Google Scholar 

Buettner P, Schumacher K, Dinov B, Zeynalova S, Sommer P, Bollmann A, Husser D, Hindricks G, Kornej J (2018) Role of NT-proANP and NT-proBNP in patients with atrial fibrillation: association with atrial fibrillation progression phenotypes. Heart Rhythm 15(8):1132–1137

Article  Google Scholar 

Romaniello A, Rubattu S, Vaiarello V, Gigante A, Volpe M, Rosato E (2021) Circulating NT-proANP level is a predictor of mortality for systemic sclerosis: a retrospective study of an Italian cohort. Expert Rev Clin Immunol 17(6):661–666

Article  CAS  PubMed  Google Scholar 

Najenson AC, Courreges AP, Perazzo JC, Rubio MF, Vatta MS, Bianciotti LG (2018) Atrial natriuretic peptide reduces inflammation and enhances apoptosis in rat acute pancreatitis. Acta Physiol 222(3):e12992

Article  Google Scholar 

Opgenorth TJ, Wu-Wong JR, Shiosaki K (1992) Endothelin-converting enzymes. FASEB J 6(9):2653–2659

Article  CAS  PubMed  Google Scholar 

Campbell DJ (2018) Neprilysin inhibitors and bradykinin. Front Med 5:257

Article  Google Scholar 

Madhani M, Scotland RS, MacAllister RJ, Hobbs AJ (2003) Vascular natriuretic peptide receptor-linked particulate guanylate cyclases are modulated by nitric oxide–cyclic GMP signalling. Br J Pharmacol 139(7):1289–1296

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou H, Murthy KS (2003) Identification of the G protein-activating sequence of the single-transmembrane natriuretic peptide receptor C (NPR-C). Am J Physiol Cell Physiol 284(5):C1255–C1261

Article  CAS  PubMed  Google Scholar 

Ichiki T, Burnett JC Jr (2017) Atrial natriuretic peptide-old but new therapeutic in cardiovascular diseases. Circ J 81(7):913–919

Article  CAS  PubMed  Google Scholar 

Drugs affecting major organ systems. In: Rang HP (ed) Rang and Dale’s pharmacology, 9th edn. Elsevier, London

Yan B, Peng L, Zhao X, Chung H, Li L, Zeng L, Ong H, Wang G (2014) Nesiritide fails to reduce the mortality of patients with acute decompensated heart failure: an updated systematic review and cumulative meta-analysis. Int J Cardiol 177(2):505–509

Article  PubMed  Google Scholar 

Sugawara A, Shimada H, Otsubo Y, Kouketsu T, Suzuki S, Yokoyama A (2021) The usefulness of angiotensin-(1–7) and des-Arg9-bradykinin as novel biomarkers for metabolic syndrome. Hypertens Res 44(8):1034–1036

Article  CAS  PubMed  Google Scholar 

Bork K, Davis-Lorton M (2013) Overview of hereditary angioedema caused by C1-inhibitor deficiency: assessment and clinical management. Eur Ann Allergy Clin Immunol 45(1):7–16

CAS  PubMed  Google Scholar 

Obtułowicz K (2016) Bradykinin-mediated angioedema. Polish Arch Int Med 126(1–2).

Golias C, Charalabopoulos A, Stagikas D, Charalabopoulos K, Batistatou A (2007) The kinin system-bradykinin: biological effects and clinical implications. Multiple role of the kinin system-bradykinin. Hippokratia 11(3):124

PubMed  PubMed Central  Google Scholar 

Terzuoli E, Meini S, Cucchi P, Catalani C, Cialdai C, Maggi CA, Giachetti A, Ziche M, Donnini S (2014) Antagonism of bradykinin B2 receptor prevents inflammatory responses in human endothelial cells by quenching the NF-kB pathway activation. PLoS ONE 9(1):e84358

Article  PubMed  PubMed Central  Google Scholar 

Cicardi M, Zuraw BL (2018) Angioedema due to bradykinin dysregulation. J Allergy Clin Immu

留言 (0)

沒有登入
gif