Candidate 3-benzazepine-1-ol type GluN2B receptor radioligands (11C-NR2B-Me enantiomers) have high binding in cerebellum but not to σ1 receptors

Hansen KB, Yi F, Perszyk RE, et al. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol. 2018;150:1081–105.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li XH, Miao HH, Zhuo M. NMDA receptor dependent long-term potentiation in chronic pain. Neurochem Res. 2018;3:531–8.

Google Scholar 

Theibert HPM, Carroll BT. NMDA antagonists in the treatment of catatonia: a review of case studies from the last 10 years. Gen Hosp Psychiatry. 2018;51:132–3.

Article  PubMed  Google Scholar 

Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci. 2007;8:413–26.

Article  CAS  PubMed  Google Scholar 

Zorumski CF, Izumi Y. NMDA receptors and metaplasticity: mechanisms and possible roles in neuropsychiatric disorders. Neurosci Biobehav Rev. 2012;36:989–1000.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monaco SA, Gulchina Y, Gao WJ. NR2B subunit in the prefrontal cortex: a double-edged sword for working memory function and psychiatric disorders. Neurosci Biobehav Rev. 2015;56:127–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weissman AD, Su TP, Hedreen JC, London ED. Sigma receptors in post-mortem human brains. J Pharmacol Exp Ther. 1988;247:29–33.

CAS  PubMed  Google Scholar 

Chu UB, Ruoho AE. Biochemical pharmacology of the sigma-1 receptor. Mol Pharmacol. 2016;89:142–53.

Article  CAS  PubMed  Google Scholar 

Pabba M, Wong AY, Ahlskog N, et al. NMDA receptors are upregulated and trafficked to the plasma membrane after sigma-1 receptor activation in the rat hippocampus. J Neurosci. 2014;34:11325–38.

Article  PubMed  PubMed Central  Google Scholar 

Maurice T, Su TP. The pharmacology of sigma-1 receptors. Pharmacol Ther. 2009;124:195–206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rousseaux CG, Greene SF. Sigma receptors [sigmaRs]: biology in normal and diseased states. J Recept Signal Transduct Res. 2016;36:327–88.

CAS  PubMed  Google Scholar 

Lupardus PJ, Wilke RA, Aydar E, et al. Membrane-delimited coupling between sigma receptors and K+ channels in rat neurohypophysial terminals requires neither G-protein nor ATP. J Physiol. 2000;526(Pt 3):527–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aydar E, Palmer CP, Klyachko VA, Jackson MB. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron. 2002;34:399–410.

Article  CAS  PubMed  Google Scholar 

Tchedre KT, Huang RQ, Dibas A, Krishnamoorthy RR, Dillon GH, Yorio T. Sigma-1 receptor regulation of voltage-gated calcium channels involves a direct interaction. Invest Ophthalmol Vis Sci. 2008;49:4993–5002.

Article  PubMed  Google Scholar 

Zhang H, Katnik C, Cuevas J. Sigma receptor activation inhibits voltage-gated sodium channels in rat intracardiac ganglion neurons. Int J Physiol Pathophysiol Pharmacol. 2009;2:1–11.

PubMed  PubMed Central  Google Scholar 

Kinoshita M, Matsuoka Y, Suzuki T, Mirrielees J, Yang J. Sigma-1 receptor alters the kinetics of Kv1.3 voltage gated potassium channels but not the sensitivity to receptor ligands. Brain Res. 2012;1452:1–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martina M, Turcotte ME, Halman S, Bergeron R. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol. 2007;578:143–57.

Article  CAS  PubMed  Google Scholar 

Zhang XJ, Liu LL, Jiang SX, Zhong YM, Yang XL. Activation of the zeta receptor 1 suppresses NMDA responses in rat retinal ganglion cells. Neuroscience. 2011;177:12–22.

Article  CAS  PubMed  Google Scholar 

Zhang XJ, Liu LL, Wu Y, Jiang SX, Zhong YM, Yang XL. sigma receptor 1 is preferentially involved in modulation of N-methyl-D-aspartate receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells. Neurosignals. 2011;19:110–6.

Article  CAS  PubMed  Google Scholar 

Pabba M, Sibille E. Sigma-1 and N-methyl-d-aspartate receptors: a partnership with beneficial outcomes. Mol Neuropsychiatry. 2015;1:47–51.

PubMed  PubMed Central  Google Scholar 

Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossmann H, Quirion R. Expression of the purported sigma(1) (sigma(1)) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat. 2000;20:375–87.

Article  CAS  PubMed  Google Scholar 

Avenet P, Leonardon J, Besnard F, et al. Antagonist properties of the stereoisomers of ifenprodil at NR1A/NR2A and NR1A/NR2B subtypes of the NMDA receptor expressed in Xenopus oocytes. Eur J Pharmacol. 1996;296:209–13.

Article  CAS  PubMed  Google Scholar 

Lengyel C, Dezsi L, Biliczki P, et al. Effect of a neuroprotective drug, eliprodil on cardiac repolarisation: importance of the decreased repolarisation reserve in the development of proarrhythmic risk. Br J Pharmacol. 2004;143:152–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haider A, Herde AM, Kramer SD, et al. Preclinical evaluation of benzazepine-based PET radioligands (R)- and (S)-(11)C-Me-NB1 reveals distinct enantiomeric binding patterns and a tightrope walk between GluN2B- and sigma1-receptor-targeted PET imaging. J Nucl Med. 2019;60:1167–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haider A, Iten I, Ahmed H, et al. Identification and preclinical evaluation of a radiofluorinated benzazepine derivative for imaging the GluN2B subunit of the ionotropic NMDA receptor. J Nucl Med. 2019;60:259–66.

Article  CAS  PubMed Central  Google Scholar 

Cai L, Liow JS, Morse CL, et al. Evaluation of (11)C-NR2B-SMe and its enantiomers as PET radioligands for imaging the NR2B subunit within the NMDA receptor complex in rats. J Nucl Med. 2020;61:00–000.

Article  Google Scholar 

James ML, Shen B, Zavaleta CL, et al. New positron emission tomography (PET) radioligand for imaging sigma-1 receptors in living subjects. J Med Chem. 2012;55:8272–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pike VW. Considerations in the development of reversibly binding PET radioligands for brain imaging. Curr Med Chem. 2016;23:1818–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mutel V, Buchy D, Klingelschmidt A, et al. In vitro binding properties in rat brain of [3H]Ro 25-6981, a potent and selective antagonist of NMDA receptors containing NR2B subunits. J Neurochem. 1998;70:2147–55.

Article  CAS  PubMed  Google Scholar 

Patel S, Gibson R. In vivo site-directed radiotracers: a mini-review. Nucl Med Biol. 2008;35:805–15.

Article  CAS  PubMed  Google Scholar 

Ahmed H, Haider A, Varisco J, et al. Structure-affinity relationships of 2,3,4,5-tetrahydro-1H-3-benzazepine and 6,7,8,9-tetrahydro-5H-benzo[7]annulen-7-amine analogues and the discovery of a radiofluorinated 2,3,4,5-tetrahydro-1H-3-benzazepine congener for imaging GluN2B subunit-containing N-methyl-d-aspartate receptors. J Med Chem. 2019;62:9450–70.

Article  CAS  PubMed  Google Scholar 

Jin DH, Jung YW, Ko BH, Moon IS. Immunoblot analyses on the differential distribution of NR2A and NR2B subunits in the adult rat brain. Mol Cells. 1997;7:749–54.

CAS  PubMed  Google Scholar 

Wang YH, Bosy TZ, Yasuda RP, et al. Characterization of NMDA receptor subunit-specific antibodies: distribution of NR2A and NR2B receptor subunits in rat brain and ontogenic profile in the cerebellum. J Neurochem. 1995;65:176–83.

Article  CAS  PubMed  Google Scholar 

Chen G, Li Q, Feng D, Hu T, Fang Q, Wang Z. Expression of NR2B in different brain regions and effect of NR2B antagonism on learning deficits after experimental subarachnoid hemorrhage. Neuroscience. 2013;231:136–44.

Article  CAS  PubMed  Google Scholar 

Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol. 1994;347:150–60.

Article  CAS  PubMed  Google Scholar 

Fischer G, Mutel V, Trube G, et al. Ro 25–6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. J Pharmacol Exp Ther. 1997;283:1285–92.

CAS  PubMed  Google Scholar 

Zhou ZL, Cai SX, Whittemore ER, et al. 4-Hydroxy-1-[2-(4-hydroxyphenoxy)ethyl]-4-(4-methylbenzyl)piperidine: a novel, potent, and selective NR1/2B NMDA receptor antagonist. J Med Chem. 1999;42:2

留言 (0)

沒有登入
gif