Copper chaperone antioxidant 1: multiple roles and a potential therapeutic target

Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4(3):176–185. https://doi.org/10.1038/nchembio.72

Article  CAS  PubMed  Google Scholar 

Pierson H, Yang H, Lutsenko S (2019) Copper transport and disease: what can we learn from organoids? Annu Rev Nutr 39(75–94. https://doi.org/10.1146/annurev-nutr-082018-124242

Tsang T, Davis CI, Brady DC (2021) Copper biology. Curr Biol 31(9):R421–R427. https://doi.org/10.1016/j.cub.2021.03.054

Article  CAS  PubMed  Google Scholar 

Huffman DL, O’Halloran TV (2001) Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70(677–701. https://doi.org/10.1146/annurev.biochem.70.1.677

Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6(2):171–180. https://doi.org/10.1016/s1367-5931(02)00298-3

Article  CAS  PubMed  Google Scholar 

Harris ED (2003) Basic and clinical aspects of copper. Crit Rev Clin Lab Sci 40(5):547–586

Article  CAS  PubMed  Google Scholar 

Bandmann O, Weiss KH, Kaler SG (2015) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14(1):103–113. https://doi.org/10.1016/S1474-4422(14)70190-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Czlonkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH, Schilsky ML (2018) Wilson disease Nat Rev Dis Primers 4(1):21. https://doi.org/10.1038/s41572-018-0018-3

Article  PubMed  Google Scholar 

Kaler SG (2011) ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol 7(1):15–29. https://doi.org/10.1038/nrneurol.2010.180

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ (2021) Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res 1868(2):118893. https://doi.org/10.1016/j.bbamcr.2020.118893

Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189(1–2):147–163. https://doi.org/10.1016/s0300-483x(03)00159-8

Article  CAS  PubMed  Google Scholar 

Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L (2014) Copper active sites in biology. Chem Rev 114(7):3659–3853. https://doi.org/10.1021/cr400327t

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586):1254–1261. https://doi.org/10.1126/science.abf0529

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin SJ, Culotta VC (1995) The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci U S A 92(9):3784–3788. https://doi.org/10.1073/pnas.92.9.3784

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klomp LW, Lin SJ, Yuan DS, Klausner RD, Culotta VC, Gitlin JD (1997) Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem 272(14):9221–9226. https://doi.org/10.1074/jbc.272.14.9221

Article  CAS  PubMed  Google Scholar 

Hung IH, Casareno RL, Labesse G, Mathews FS, Gitlin JD (1998) HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem 273(3):1749–1754. https://doi.org/10.1074/jbc.273.3.1749

Article  CAS  PubMed  Google Scholar 

Hamza I, Prohaska J, Gitlin JD (2003) Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc Natl Acad Sci U S A 100(3):1215–1220. https://doi.org/10.1073/pnas.0336230100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodriguez-Granillo A, Wittung-Stafshede P (2008) Structure and dynamics of Cu(I) binding in copper chaperones Atox1 and CopZ: a computer simulation study. J Phys Chem B 112(15):4583–4593. https://doi.org/10.1021/jp711787x

Article  CAS  PubMed  Google Scholar 

Jana A, Das A, Krett NL, Guzman G, Thomas A, Mancinelli G, Bauer J, Ushio-Fukai M, Fukai T, Jung B (2020) Nuclear translocation of Atox1 potentiates activin A-induced cell migration and colony formation in colon cancer. PLoS One 15(1):e0227916. https://doi.org/10.1371/journal.pone.0227916

Reinhardt HC, Yaffe MB (2013) Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol 14(9):563–580. https://doi.org/10.1038/nrm3640

Article  CAS  PubMed  Google Scholar 

Chen L, Li N, Zhang M, Sun M, Bian J, Yang B, Li Z, Wang J, Li F, Shi X et al (2021) APEX2-based proximity labeling of Atox1 identifies CRIP2 as a nuclear copper-binding protein that regulates autophagy activation. Angew Chem Int Ed Engl 60(48):25346–25355. https://doi.org/10.1002/anie.202108961

Article  CAS  PubMed  Google Scholar 

Hatori Y, Yan Y, Schmidt K, Furukawa E, Hasan NM, Yang N, Liu CN, Sockanathan S, Lutsenko S (2016) Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Nat Commun 7(10640. https://doi.org/10.1038/ncomms10640

Levy AR, Yarmiayev V, Moskovitz Y, Ruthstein S (2014) Probing the structural flexibility of the human copper metallochaperone Atox1 dimer and its interaction with the CTR1 c-terminal domain. J Phys Chem B 118(22):5832–5842. https://doi.org/10.1021/jp412589b

Article  CAS  PubMed  Google Scholar 

Maghool S, Fontaine S, Roberts BR, Kwan AH, Maher MJ (2020) Human glutaredoxin-1 can transfer copper to isolated metal binding domains of the P1B-type ATPase, ATP7B. Sci Rep 10(1):4157. https://doi.org/10.1038/s41598-020-60953-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mercer SW, La Fontaine S, Warr CG, Burke R (2016) Reduced glutathione biosynthesis in Drosophila melanogaster causes neuronal defects linked to copper deficiency. J Neurochem 137(3):360–370. https://doi.org/10.1111/jnc.13567

Article  CAS  PubMed  Google Scholar 

Petzoldt S, Kahra D, Kovermann M, Dingeldein AP, Niemiec MS, Aden J, Wittung-Stafshede P (2015) Human cytoplasmic copper chaperones Atox1 and CCS exchange copper ions in vitro. Biometals 28(3):577–585. https://doi.org/10.1007/s10534-015-9832-1

Article  CAS  PubMed  Google Scholar 

Boyd SD, Ullrich MS, Skopp A, Winkler DD (2020) Copper sources for Sod1 activation. Antioxidants (Basel) 9(6): https://doi.org/10.3390/antiox9060500

Hamza I, Faisst A, Prohaska J, Chen J, Gruss P, Gitlin JD (2001) The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proc Natl Acad Sci U S A 98(12):6848–6852. https://doi.org/10.1073/pnas.111058498

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyayama T, Suzuki KT, Ogra Y (2009) Copper accumulation and compartmentalization in mouse fibroblast lacking metallothionein and copper chaperone, Atox1. Toxicol Appl Pharmacol 237(2):205–213. https://doi.org/10.1016/j.taap.2009.03.024

Article  CAS  PubMed  Google Scholar 

Monnot AD, Zheng G, Zheng W (2012) Mechanism of copper transport at the blood-cerebrospinal fluid barrier: influence of iron deficiency in an in vitro model. Exp Biol Med (Maywood) 237(3):327–333. https://doi.org/10.1258/ebm.2011.011170

Article  CAS  PubMed  Google Scholar 

Vendelboe TV, Harris P, Zhao Y, Walter TS, Harlos K, El Omari K, Christensen HE (2016) The crystal structure of human dopamine beta-hydroxylase at 2.9 A resolution. Sci Adv 2(4):e1500980. https://doi.org/10.1126/sciadv.1500980

Katsuyama M, Kimura E, Ibi M, Iwata K, Matsumoto M, Asaoka N, Yabe-Nishimura C (2021) Clioquinol inhibits dopamine-beta-hydroxylase secretion and noradrenaline synthesis by affecting the redox status of ATOX1 and copper transport in human neuroblastoma SH-SY5Y cells. Arch Toxicol 95(1):135–148. https://doi.org/10.1007/s00204-020-02894-0

Article  CAS  PubMed  Google Scholar 

Yatsunyk LA, Rosenzweig AC (2007) Cu(I) binding and transfer by the N terminus of the Wilson disease protein. J Biol Chem 282(12):8622–8631. https://doi.org/10.1074/jbc.M609533200

Article  CAS  PubMed  Google Scholar 

Beaino W, Guo Y, Chang AJ, Anderson CJ (2014) Roles of Atox1 and p53 in the trafficking of copper-64 to tumor cell nuclei: implications for cancer therapy. J Biol Inorg Chem 19(3):427–438. https://doi.org/10.1007/s00775-013-1087-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

McRae R, Lai B, Fahrni CJ (2010) Copper redistribution in Atox1-deficient mouse fibroblast cells. J Biol Inorg Chem 15(1):99–105. https://doi.org/10.1007/s00775-009-0598-1

Article  CAS  PubMed  Google Scholar 

Ralle M, Lutsenko S, Blackburn NJ (2003) X-ray absorption spectroscopy of the copper chaperone HAH1 reveals a linear two-coordinate Cu(I) center capable of adduct formation with exogenous thiols and phosphines. J Biol Chem 278(25):23163–23170. https://doi.org/10.1074/jbc.M303474200

Article  CAS  PubMed  Google Scholar 

Narindrasorasak S, Zhang X, Roberts EA, Sarkar B (2004) Comparative analysis of metal binding characteristics of copper chaperone proteins, Atx1 and ATOX1. Bioinorg Chem Appl 105–123. https://doi.org/10.1155/S1565363304000081

Wernimont AK, Huffman DL, Lamb AL, O’Halloran TV, Rosenzweig AC (2000) Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Biol 7(9):766–771. https://doi.org/10.1038/78999

Article  CAS  PubMed  Google Scholar 

van Dongen EM, Klomp LW, Merkx M (2004) Copper-dependent protein-protein interactions studied by yeast two-hybrid analysis. Biochem Biophys Res Commun 323(3):789–795. https://doi.org/10.1016/j.bbrc.2004.08.160

Article  CAS  PubMed  Google Scholar 

Yang H, Zhong C, Tan X, Chen G, He Y, Liu S, Luo Z (2022) Transcriptional responses of copper-transport-related genes ctr1, ctr2 and atox1 and their roles in the regulation of Cu homeostasis in yellow catfish Pelteobagrus fulvidraco. Int J Mol Sci 23(20): https://doi.org/10.3390/ijms232012243

Boultwood J, Strickson AJ, Jabs EW, Cheng JF, Fidler C, Wainscoat JS (20

留言 (0)

沒有登入
gif