Mesenchymal stem cells: a trojan horse to treat glioblastoma

Burt Nabors L et al (2013) Central nervous system cancers. J Natl Compr Canc Netw 1(9):1114–1151. https://doi.org/10.6004/JNCCN.2013.0132

Article  Google Scholar 

Lim M, Xia Y, Bettegowda C, Weller M (2018) Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol 15(7):422–442. https://doi.org/10.1038/S41571-018-0003-5

Article  CAS  PubMed  Google Scholar 

Ziu M, Schmidt NO, Cargioli TG, Aboody KS, Black PML, Carroll RS (2006) Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol 79(2):125–133. https://doi.org/10.1007/S11060-006-9121-5

Article  CAS  PubMed  Google Scholar 

Berens ME, Giese A (1999) . . . those left behind.’ Biology and Oncology of Invasive Glioma Cells. Neoplasia 1(3). Nature Publishing Group, 208–219. https://doi.org/10.1038/sj.neo.7900034

Mason WP (2015) Blood-brain barrier-associated efflux transporters: a significant but underappreciated obstacle to drug development in glioblastoma. Neuro Oncol 17(9):1181. https://doi.org/10.1093/NEUONC/NOV122

Article  PubMed  PubMed Central  Google Scholar 

Osswald M et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528(7580):93–98. https://doi.org/10.1038/nature16071

Article  CAS  PubMed  Google Scholar 

Sanchez-Diaz et al. (2013) Biodistribution of Mesenchymal Stromal Cells after Administration in Animal Models and Humans: A Systematic Review. J Clin Med 10(13). https://doi.org/10.3390/JCM10132925

Motaln H, Schichor C, Lah TT (2010) Human mesenchymal stem cells and their use in cell-based therapies. Cancer 116(11):2519–2530. https://doi.org/10.1002/CNCR.25056

Article  CAS  PubMed  Google Scholar 

Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28(3):585–596. https://doi.org/10.1002/STEM.269

Article  CAS  PubMed  Google Scholar 

Nakamizo A et al (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65(8):3307–3318. https://doi.org/10.1158/0008-5472.CAN-04-1874

Article  CAS  PubMed  Google Scholar 

Li M et al (2019) Transforming growth factor-β promotes homing and therapeutic efficacy of human mesenchymal stem cells to glioblastoma. J Neuropathol Exp Neurol 78(4):315–325. https://doi.org/10.1093/jnen/nlz016

Article  CAS  PubMed  Google Scholar 

Bexell D, Svensson A, Bengzon J (2013) Stem cell-based therapy for malignant glioma. Cancer Treat Rev 39(4):358–365. https://doi.org/10.1016/j.ctrv.2012.06.006

Article  CAS  PubMed  Google Scholar 

Van Velthoven CTJ, Kavelaars A, Van Bel F, Heijnen CJ (2010) Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage. Pediatr Res 68(5):419–422. https://doi.org/10.1203/PDR.0B013E3181F1C289

Article  PubMed  Google Scholar 

Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106(6):1901–1910. https://doi.org/10.1182/BLOOD-2005-04-1417

Article  CAS  PubMed  Google Scholar 

Ullah M, Liu DD, Thakor AS (2019) Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience 15:421–438. https://doi.org/10.1016/J.ISCI.2019.05.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581–2587. https://doi.org/10.4049/JIMMUNOL.180.4.2581

Article  CAS  PubMed  Google Scholar 

Peled A et al (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: Role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95(11):3289–3296. https://doi.org/10.1182/blood.v95.11.3289.011k33_3289_3296

Article  CAS  PubMed  Google Scholar 

Szydlak R (2021) Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells. World J Stem Cells 13(6):619–631. https://doi.org/10.4252/WJSC.V13.I6.619

Article  PubMed  PubMed Central  Google Scholar 

Rüster B et al (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108(12):3938–3944. https://doi.org/10.1182/BLOOD-2006-05-025098

Article  PubMed  Google Scholar 

Yang C et al (2014) Conditioned media from human adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells efficiently induced the apoptosis and differentiation in human glioma cell lines in vitro. Biomed Res Int 2014. https://doi.org/10.1155/2014/109389

Velpula KK, Dasari VR, Tsung AJ, Dinh DH, Rao JS (2011) Cord blood stem cells revert glioma stem cell EMT by down regulating transcriptional activation of Sox2 and Twist1. Oncotarget 2(12):1028–1042. https://doi.org/10.18632/oncotarget.367

Article  PubMed  PubMed Central  Google Scholar 

Mohanam S et al (2001) Down-regulation of cathepsin B expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 20(28):3665–3673. https://doi.org/10.1038/SJ.ONC.1204480

Article  CAS  PubMed  Google Scholar 

Stefani FR, Eberstål S, Vergani S, Kristiansen TA, Bengzon J (2018) Low-dose irradiated mesenchymal stromal cells break tumor defensive properties in vivo. Int J Cancer 143(9):2200–2212. https://doi.org/10.1002/ijc.31599

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang SG et al (2008) Cytotoxicity of human umbilical cord blood-derived mesenchymal stem cells against human malignant glioma cells. Child’s Nerv Syst 24(3):293–302. https://doi.org/10.1007/s00381-007-0515-2

Article  Google Scholar 

Nakamura K et al (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11(14):1155–1164. https://doi.org/10.1038/sj.gt.3302276

Article  CAS  PubMed  Google Scholar 

Fan S et al (2020) Umbilical cord-derived mesenchymal stromal/stem cells expressing IL-24 induce apoptosis in gliomas. J Cell Physiol 235(2):1769–1779. https://doi.org/10.1002/JCP.29095

Article  CAS  PubMed  Google Scholar 

Foglietta F et al (2017) Selective sensitiveness of mesenchymal stem cells to shock waves leads to anticancer effect in human cancer cell co-cultures. Life Sci 173:28–35. https://doi.org/10.1016/j.lfs.2017.01.009

Article  CAS  PubMed  Google Scholar 

Goodarzi A et al (2020) Simultaneous impact of atorvastatin and mesenchymal stem cells for glioblastoma multiform suppression in rat glioblastoma multiform model. Mol Biol Rep 47(10):7783–7795. https://doi.org/10.1007/S11033-020-05855-Z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schiff P, Horwitz S (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77(3):1561–1565. https://doi.org/10.1073/PNAS.77.3.1561

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zasadil LM et al (2014) Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci Transl Med 6(229). https://doi.org/10.1126/SCITRANSLMED.3007965

Wilhelm S et al (2006) Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5(10):835–844. https://doi.org/10.1038/nrd2130

Article  CAS  PubMed  Google Scholar 

Clavreul A, Pourbaghi-Masouleh M, Roger E, Lautram N, Montero-Menei CN, Menei P (2017) Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy: A good deal? J Exp Clin Cancer Res 36(1). https://doi.org/10.1186/s13046-017-0605-2

Liu S, Zhang P, Chen Z, Liu M, Li X, Tang H (2013) MicroRNA-7 downregulates XIAP expression to suppress cell growth and promote apoptosis in cervical cancer cells. FEBS Lett 587(14). https://doi.org/10.1016/j.febslet.2013.05.054

Sharif S, Ghahremani MH, Soleimani M (2018) Delivery of Exogenous miR-124 to Glioblastoma Multiform Cells by Wharton’s Jelly Mesenchymal Stem Cells Decreases Cell Proliferation and Migration, and Confers Chemosensitivity. Stem Cell Rev Reports 14(2):236–246. https://doi.org/10.1007/s12015-017-9788-3

Article  CAS  Google Scholar 

Allahverdi A et al (2020) MicroRNA-4731-5p delivered by AD-mesenchymal stem cells induces cell cycle arrest and apoptosis in glioblastoma. J Cell Physiol 235(11):8167–8175. https://doi.org/10.1002/JCP.29472

Article  CAS  PubMed  Google Scholar 

Pastorakova A, Jakubechova J, Altanerova U, Altaner C (2020) Suicide Gene Therapy Mediated with Exosomes Produced by Mesenchymal Stem/Stromal Cells Stably Transduced with HSV Thymidine Kinase. Cancers (Basel) 12(5). https://doi.org/10.3390/CANCERS12051096

Fischer U, Steffens S, Frank S, Rainov NG, Schulze-Osthoff K, Kramm CM (2005) Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/ 5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene 24(7):1231–1243. https://doi.org/10.1038/SJ.ONC.1208290

Article  CAS  PubMed  Google Scholar 

Moolten FL (1986) Tumor Chemosensitivity Conferred by Inserted Herpes Thymidine Kinase Genes: Paradigm for a Prospective Cancer Control Strategy. Cancer Res 46(10):5276–5281

CAS  PubMed  Google Scholar 

Immonen A et al (2004) AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: A randomised, controlled study. Mol Ther 10(5):967–972. https://doi.org/10.1016/j.ymthe.2004.08.002

Article  CAS  PubMed  Google Scholar 

Singhal S, Kaiser LR (1998) Cancer chemotherapy using suicide genes - PubMed. https://pubmed.ncbi.nlm.nih.gov/9624215/ (accessed Jan. 17, 2022)

Alieva M et al (2012) Glioblastoma therapy with cytotoxic mesenchymal stromal cells optimized by bioluminescence imaging of tumor and therapeutic cell response. PLoS One 7(4). https://doi.org/10.1371/journal.pone.0035148

Kuriyama S et al (1998) Bystander effect caused by cytosine deaminase gene and 5-fluorocytosine in vitro is substantially mediated by generated 5-fluorouracil - PubMed. https://pubmed.ncbi.nlm.nih.gov/9858915/. Accessed 16 Jan 2022  

Tu GXE, Ho YK, Ng ZX, Teo KJ, Yeo TT, Too HP (2020) A facile and scalable in production non-viral gene engineered mesenchymal stem cells for effective suppression of temozolomide-resistant (TMZR) glioblastoma growth. Stem Cell Res Ther 11(1):1–15. https://doi.org/10.1186/s13287-020-01899-x

Article  CAS  Google Scholar 

Choi SA et al (2012) Human adipose tissue-derived mesenchymal stem cells: Characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur J Cancer 48(1):129–137. https://doi.org/10.1016/j.ejca.2011.04.033

留言 (0)

沒有登入
gif