Identification of an inhibitor for atherosclerotic enzyme NOX-1 to inhibit ROS production

Rozanski A, Blumenthal JA, Kaplan J (1999) Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation 99(16):2192–2217

Article  CAS  PubMed  Google Scholar 

Lassègue B, San Martín A, Griendling KK (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 110(10):1364–1390

Article  PubMed  PubMed Central  Google Scholar 

Waghela BN, Vaidya FU, Agrawal Y, Santra MK, Mishra V, Pathak C (2021) Molecular insights of NADPH oxidases and its pathological consequences. Cell Biochem Funct 39(2):218–234

Article  CAS  PubMed  Google Scholar 

Zeeshan HMA, Lee GH, Kim HR, Chae HJ (2016) Endoplasmic reticulum stress and associated ROS. Int J Mol Sci 17(3):327

Article  PubMed  PubMed Central  Google Scholar 

Sorescu D, Weiss D, Lassègue B, Clempus RE, Szöcs K, Sorescu GP, Valppu L, Quinn MT, Lambeth JD, Vega JD, TaylorWR GKK (2002) Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105(12):1429–1435

Article  CAS  PubMed  Google Scholar 

Rokutan K, Kawahara T, Kuwano Y, Tominaga K, Nishida K, Teshima-Kondo S (2008) Nox enzymes and oxidative stress in the immunopathology of the gastrointestinal tract. Semin Immunopathol 30(3):315–327

Article  CAS  PubMed  Google Scholar 

Cui XL, Brockman D, Campos B, Myatt L (2006) Expression of NADPH oxidase isoform 1 (NOX1) in human placenta: involvement in preeclampsia. Placenta 27(4–5):422–431

Article  CAS  PubMed  Google Scholar 

Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106(3):852–859

Article  CAS  PubMed  Google Scholar 

Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11(10):2481–2504

Article  CAS  PubMed  Google Scholar 

Ambasta RK, KumarP GKK, Schmidt HH, Busse R, Brandes RP (2004) Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 279(44):45935–45941

Article  CAS  PubMed  Google Scholar 

Hanna IR, Hilenski LL, Dikalova A, Taniyama Y, Dikalov S, Lyle A, Quinn MT, Lassègue B, Griendling KK (2004) Functional association of NOX1 with p22phox in vascular smooth muscle cells. Free Radic Biol Med 37(10):1542–1549

Article  CAS  PubMed  Google Scholar 

Kawahara T, Ritsick D, Cheng G, Lambeth JD (2005) Point mutations in the proline-rich region of p22phox are dominant inhibitors of NOX1- and Nox2-dependent reactive oxygen generation. J Biol Chem 280(36):31859–31869

Article  CAS  PubMed  Google Scholar 

Doran AC, Meller N, McNamara CA (2008) Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 28(5):812–819

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lassègue B, Sorescu D, Szöcs K, Yin Q, Akers M, Zhang Y, Grant SL, Lambeth JD, Griendling KK (2001) Novel gp91(phox) homologues in vascular smooth muscle cells: NOX1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88(9):888–894

Article  PubMed  Google Scholar 

Manea A, Tanase LI, Raicu M, Simionescu M (2010) Jak/STAT signaling pathway regulates NOX1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 30(1):105–112

Article  CAS  PubMed  Google Scholar 

Briones AM, Tabet F, Callera GE, Montezano AC, Yogi A, He Y, Quinn MT, Salaices M, Touyz RM (2011) Differential regulation of NOX1, Nox2 and Nox4 in vascular smooth muscle cells from WKY and SHR. J Am Soc Hypertens JASH 5(3):137–153

Article  CAS  PubMed  Google Scholar 

Pérez-Girón JV, Palacios R, Martín A, Hernanz R, Aguado A, Martínez-Revelles S, Barrús MT, Salaices M, Alonso MJ (2014) Pioglitazone reduces angiotensin II-induced COX-2 expression through inhibition of ROS production and ET-1 transcription in vascular cells from spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 306(11):H1582–H1593

Article  PubMed  Google Scholar 

Martín A, Pérez-Girón JV, Hernanz R, Palacios R, Briones AM, Fortuño A, Zalba G, Salaices M, Alonso MJ (2012) Peroxisome proliferator-activated receptor-γ activation reduces cyclooxygenase-2 expression in vascular smooth muscle cells from hypertensive rats by interfering with oxidative stress. J Hypertens 30(2):315–326

Article  PubMed  Google Scholar 

Aguado A, Fischer T, Rodríguez C, Manea A, Martínez-González J, Touyz RM, Hernanz R, Alonso MJ, Dixon DA, Briones AM, Salaices M (2016) Hu antigen R is required for NOX-1 but not NOX-4 regulation by inflammatory stimuli in vascular smooth muscle cells. J Hypertens 34(2):253–265

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schröder K (2014) NADPH oxidases in redox regulation of cell adhesion and migration. Antioxid Redox Signal 20(13):2043–2058

Article  PubMed  Google Scholar 

Gray SP, Di Marco E, Kennedy K, Chew P, Okabe J, El-Osta A, Calkin AC, Biessen EA, Touyz RM, Cooper ME, Schmidt HH, Jandeleit-Dahm KA (2016) Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling. Arterioscler Thromb Vasc Biol 36(2):295–307

Article  CAS  PubMed  Google Scholar 

Sheehan AL, Carrell S, Johnson B, Stanic B, Banfi B, Miller FJ Jr (2011) Role for NOX1 NADPH oxidase in atherosclerosis. Atherosclerosis 216(2):321–326

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang KH, Park JM, Lee CH, Kim B, Choi KC, Choi SJ, Lee K, Lee MY (2017) NADPH oxidase (NOX) 1 mediates cigarette smoke-induced superoxide generation in rat vascular smooth muscle cells. Toxicol In Vitro Int J Publ Assoc BIBRA 38:49–58

Article  CAS  Google Scholar 

Rada B, Hably C, Meczner A, Timár C, Lakatos G, Enyedi P, Ligeti E (2008) Role of Nox2 in elimination of microorganisms. Semin Immunopathol 30(3):237–253

Article  CAS  PubMed  Google Scholar 

Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

Article  CAS  PubMed  Google Scholar 

Jung O, Schreiber JG, Geiger H, Pedrazzini T, Busse R, Brandes RP (2004) gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation 109(14):1795–1801

Article  CAS  PubMed  Google Scholar 

Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269(1–2):131–140

Article  CAS  PubMed  Google Scholar 

Clempus RE, Sorescu D, Dikalova AE, Pounkova L, Jo P, Sorescu GP, Schmidt HH, Lassègue B, Griendling KK (2007) Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 27(1):42–48

Article  CAS  PubMed  Google Scholar 

Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, Wakisaka M, Ibayashi S, Utsumi H, Iida M (2004) Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 109(2):227–233

Article  CAS  PubMed  Google Scholar 

Haurani MJ, Cifuentes ME, Shepard AD, Pagano PJ (2008) Nox4 oxidase overexpression specifically decreases endogenous Nox4 mRNA and inhibits angiotensin II-induced adventitial myofibroblast migration. Hypertension 52(1):143–149

Article  CAS  PubMed  Google Scholar 

Miller AA, Drummond GR, Schmidt HH, Sobey CG (2005) NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res 97(10):1055–1062

Article  CAS  PubMed  Google Scholar 

Montezano AC, Burger D, Ceravolo GS, Yusuf H, Montero M, Touyz RM (2011) Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5. Clin Sci 120(4):131–141

Article  CAS  Google Scholar 

Guzik TJ, Chen W, Gongora MC, Guzik B, Lob HE, Mangalat D, Hoch N, Dikalov S, Rudzinski P, Kapelak B, Sadowski J, Harrison DG (2008) Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J Am Coll Cardiol 52(22):1803–1809

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirano K, Chen WS, Chueng AL, Dunne AA, Seredenina T, Filippova A, Rutter AR (2015) Discovery of GSK2795039, a novel small molecule NADPH oxidase 2 inhibitor. Antioxid Redox Signal 23(5):358–374

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng SY, Yang L, Yan QJ, Gao L, Lu HQ, Yan PK (2019)

留言 (0)

沒有登入
gif