Association of the Level of Serum Prolactin with Polymorphic Variants of the GRIN2A, GPM3, and GPM7 Genes in Patients with Schizophrenia Taking Conventional and Atypical Antipsychotics

McCutcheon R.A., Krystal J.H., Howes O.D. 2020. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 19 (1), 15–33. https://doi.org/10.1002/wps.20693

Article  PubMed  PubMed Central  Google Scholar 

Stahl S. 2018. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectrums. 23 (3), 187–191. https://doi.org/10.1017/S1092852918001013

Article  PubMed  Google Scholar 

Gareeva A.E. 2019. Modern view on the neurobiological hypotheses of schizophrenia. Zh. Vyssh. Nerv. Deyat. im. I.P. Pavlova. 69 (4), 437–455. https://doi.org/10.1134/S0044467719040038

Article  Google Scholar 

Schwartz T.L., Sachdeva S., Stahl S.M. 2012. Glutamate neurocircuitry: theoretical underpinnings in schizophrenia. Front. Pharmacol. 3, 195.

Article  PubMed  PubMed Central  Google Scholar 

Cadinu D., Grayson B., Podda G., Harte M.K., Doostdar N., Neill J.C. 2018. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology. 142, 41–62. https://doi.org/10.1016/j.neuropharm.2017.11.045

Article  CAS  PubMed  Google Scholar 

Adell A. 2020. Brain NMDA receptors in schizophrenia and depression. Biomolecules. 10 (6), 947. https://doi.org/10.3390/biom10060947

Article  CAS  PubMed  PubMed Central  Google Scholar 

Javitt D.C., Jotkowitz A, Sircar R., Zukin S.R. 1987. Non-competitive regulation of phencyclidine/sigma-receptors by the N-methyl-D-aspartate receptor antagonist D-(–)-2-amino-5-phosphonovaleric acid. Neurosci. Lett. 78 (2), 193–198. https://doi.org/10.1016/0304-3940(87)90632-x

Article  CAS  PubMed  Google Scholar 

Fujigaki H., Mouri A., Yamamoto Y., Nabeshima T., Saito K. 2019. Linking phencyclidine intoxication to the tryptophan-kynurenine pathway: therapeutic implications for schizophrenia. Neurochem. Int. 125, 1–6. https://doi.org/10.1016/j.neuint.2019.02.001

Article  CAS  PubMed  Google Scholar 

Shah U.H., González-Maeso J. 2019. Serotonin and glutamate interactions in preclinical schizophrenia models. ACS Chem. Neurosci. 10 (7), 3068–3077. https://doi.org/10.1021/acschemneuro.9b00044

Article  CAS  PubMed  Google Scholar 

Ibi D., de la Fuente Revenga M., Kezunovic N., Muguruza C., Saunders J.M., Gaitonde S.A., Moreno J.L., Ijaz M.K., Santosh V., Kozlenkov A., Holloway T., Seto J., García-Bea A., Kurita M., Mosley G.E., Jiang Y., Christoffel D.J., Callado L.F., Russo S.J., Dracheva S., López-Giménez J.F., Ge Y., Escalante C.R., Meana J.J., Akbarian S., Huntley G.W., González-Maeso J. 2017. Antipsychotic-induced Hdac2 transcription via NF-κB leads to synaptic and cognitive side effects. Nat. Neurosci. 20 (9), 1247–1259. https://doi.org/10.1038/nn.4616

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mosolov S.N. 2018. Psychosis of dopamine hypersensitivity at the current stage of antipsychotic pharmacotherapy of schizophrenia: what the practitioner needs to know. Sovrem. Ter. Psikh. Rasstroistv. 4, 41–49.

Google Scholar 

Ivanov M.V., Neznanov N.G., Kosterin D.N. 2014. Antipsychotics. In Ratsional’naya farmakoterapiya v psikhiatricheskoi praktike. Rukovodstvo dlya praktikuyuschikh vrachei (Rational Pharmacotherapy in Psychiatric Practice: A Guide for Practitioners). Ser. Ratsion. Farmakoter., Aleksandrovskii Yu.A., Neznanov N.G., Eds., Moscow: Litterra, 142–175.

Mittal S., Prasad S., Ghosh A. 2018. Antipsychotic-induced hyperprolactinaemia: case studies and review. Postgrad. Med. J. 94 (1110), 226–229. https://doi.org/10.1136/postgradmedj-2017-135221

Article  CAS  PubMed  Google Scholar 

Jeong H., Lee M. 2013. Long-acting injectable antipsychotics in first-episode schizophrenia. Clin. Psychopharmacol. Neurosci. 11 (1), 1–6.

Article  PubMed  PubMed Central  Google Scholar 

Gorobets L.N., Bulanov V.S., Litvinov A.V. 2016. Features of the formation of neuroendocrine dysfunctions in patients with schizophrenia in outpatient practice (a naturalistic study). Farmateka. S4, 41–45.

Google Scholar 

Osmanova D.Z., Boiko A.S., Fedorenko O.Yu., Pozhidaev I.V., Freidin M.B., Stegnii V.N., Kornetova E.G., Ivanova S.A. 2018. The role of dopaminergic system genes in the development of antipsychotic-induced hyperprolactinemia in patients with schizophrenia. Psikhicheskoe Zdorov’e. 16 (5), 25–27.

Google Scholar 

Leucht S., Cipriani A., Spineli L., Mavridis D., Orey D., Richter F., Samara M., Barbui C., Engel R.R., Geddes J.R., Kissling W., Stapf M.P., Lässig B., Salanti G., Davis J.M. 2013. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 382 (9896), 951–962. https://doi.org/10.1016/S0140-6736(13)60733-3

Article  CAS  PubMed  Google Scholar 

Meltzer H.Y., Elkis H., Vanover K., Weiner D.M., van Kammen D.P., Peters P., Hacksell U. 2012. Pimavanserin, a selective serotonin (5-HT)2A-inverse agonist, enhances the efficacy and safety of risperidone, 2 mg/day, but does not enhance efficacy of haloperidol, 2 mg/day: comparison with reference dose risperidone, 6 mg/day. Schizophr. Res. 141 (2–3), 144–152. https://doi.org/10.1016/j.schres.2012.07.029

Article  PubMed  Google Scholar 

Baldessarini R.J., Tarazi F.I. 2001. Drugs and the treatment of psychiatric disorders: antipsychotic and antimanic agents. In Goodman and Gilman’s the Pharmacological Basis of Therapeutics. 10th ed. Hardman J.G., Limbird L.E., Gilman A.G., Eds. New York: McGraw-Hill Press, 485–528.

Google Scholar 

Uno Y., Coyle J.T. 2019. Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 73 (5), 204–215. https://doi.org/10.1111/pcn.12823

Article  PubMed  Google Scholar 

Egerton A., Grace A.A., Stone J., Bossong M.G., Sand M., McGuire P. 2020. Glutamate in schizophrenia: neurodevelopmental perspectives and drug development. Schizophr. Res. 223, 59–70. https://doi.org/10.1016/j.schres.2020.09.013

Article  PubMed  Google Scholar 

Kay S.R., Fiszbein A., Opler L.A. 1987. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13 (2), 261–276.

Article  CAS  PubMed  Google Scholar 

Sambrook J., Fritsch E.R., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press.

Google Scholar 

Bakker P.R., Al Hadithy A.F., Amin N., van Duijn C.M., van Os J., van Harten P.N. 2012. Antipsychotic-induced movement disorders in long-stay psychiatric patients and 45 tag SNPs in 7 candidate genes: a prospective study. PLoS One. 7 (12), e50970. https://doi.org/10.1371/journal.pone.0050970

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang W., Yu H., Su Y., Lu T., Yan H., Yue W., Zhang D. 2020. Variants of GRM7 as risk factor and response to antipsychotic therapy in schizophrenia. Transl. Psychiatry. 10 (1), 83. https://doi.org/10.1038/s41398-020-0763-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang X., Wang G., Wang Y., Yue X. 2015. Association of metabotropic glutamate receptor 3 gene polymorphisms with schizophrenia risk: evidence from a meta-analysis. Neuropsychiatr. Dis. Treat. 11, 823–833. https://doi.org/10.2147/NDT.S77966

Article  PubMed  PubMed Central  Google Scholar 

Peuskens J., Pani L., Detraux J., De Hert M. 2014. The effects of novel and newly approved antipsychotics on serum prolactin levels: A comprehensive review. CNS Drugs. 28 (5), 421–453.

CAS  PubMed  PubMed Central  Google Scholar 

Patil S.T., Zhang L., Martenyi F., Lowe S.L., Jackson K.A., Andreev B.V., Avedisova A.S., Bardenstein L.M., Gurovich I.Y., Morozova M.A., Mosolov S.N., N-eznanov N.G., Reznik A.M., Smulevich A.B., Tochilov V.A., Johnson B.G., Monn J.A., Schoepp D.D. 2007. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat. Med. 13, 1102–1107.

Article  CAS  PubMed  Google Scholar 

Mössner R., Schuhmacher A., Schulze-Rauschenbach S., Kühn K.U., Rujescu D., Rietschel M., Zobel A., Franke P., Wölwer W., Gaebel W., Häfner H., Wagner M., Maier W. 2008. Further evidence for a functional role of the glutamate receptor gene GRM3 in schizophrenia. Eur. Neuropsychopharmacol. 18 (10), 768–772. https://doi.org/10.1016/j.euroneuro.2008.05.007

Article  CAS  PubMed  Google Scholar 

Norton N., Williams H.J., Dwyer S., Ivanov D., Preece A.C., Gerrish A., Williams N.M., Yerassimou P., Zammit S., O’Donovan M.C., Owen M.J. 2005. No evidence for association between polymorphisms in GRM3 and schizophrenia. BMC Psychiatry. 5, 23. https://doi.org/10.1186/1471-244X-5-23

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tochigi M., Suga M., Ohashi J., Otowa T., Yamasue H., Kasai K., Kato T., Okazaki Y., Kato N., Sasaki T. 2006. No association between the metabotropic glutamate receptor type 3 gene (GRM3) and schizophrenia in a Japanese population. Schizophr. Res. 88 (1–3), 260–264. https://doi.org/10.1016/j.schres.2006.07.008

Article  PubMed  Google Scholar 

Chaumette B., Sengupta S.M., Lepage M., Malla A., Iyer S.N., Kebir O., ICAAR study group, Dion P.A., Rouleau G.A., Krebs M.O., Shah J.L, Joober R. 2020. A polymorphism in the glutamate metabotropic receptor 7 is associated with cognitive deficits in the early phases of psychosis. Schizophr. Res. S0920-9964 (20), 30371–30376. https://doi.org/10.1016/j.schres.2020.06.019

Poltavskaya E.G., Fedorenko O.Y., Kornetova E.G., Loonen A.J.M., Kornetov A.N., Bokhan N.A., Ivanova S.A. 2021. Study of early onset schizophrenia: associations of GRIN2A and GRIN2B polymorphisms. Life (Basel). 11 (10), 997. https://doi.org/10.3390/life11100997

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kornetova E.G., Ivanova S.A., Tiguntsev V.V., Boyko A.S., Lobacheva O.A., Kornetov A.N., Semke A.V. 2019. A-ntipsikhotik-indutsirovannaya giperprolaktinemiya u bol’nykh shizofreniei: sotsial’nye, klinicheskie, immunologicheskie i terapevticheskie osobennosti. (Antipsychotic-Induced Hyperprolactinemia in Patients with Schizophrenia: Social, Clinical, Immunological, and Therapeutic Features). Tomsk: Integral’nyi Pereplet.

Yankovskaya A.G. 2017. The level of prolactin in women with schizophrenia in the early stages of the disease in terms of psychopharmacotherapy. Zh. Grodnensk. Gos. Med. Univ. 15 (4), 437–441.

Google Scholar 

Mittal S., Prasad S., Ghosh A. 2018. Antipsychotic-induced hyperprolactinaemia: case studies and review. Postgrad. Med. J. 94, 226–229. https://doi.org/10.1136/postgradmedj-2017-135221

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif