Structure and Evolution of the AqE Gene in Insects

Honka E., Fabry S., Niermann T., Palm P., Hensel R. 1990. Properties and primary structure of the L-malate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus. Eur. J. Biochem. 188, 623–632. https://doi.org/10.1111/j.1432-1033.1990.tb15443.x

Article  CAS  PubMed  Google Scholar 

Jendrossek D., Kratzin H.D., Steinbuchel A. 1993. The Alcaligenes eutrophus ldh structural gene encodes a novel type of lactate dehydrogenase. FEMS Microbiol. Lett. 112, 229–235. https://doi.org/10.1111/j.1574-6968.1993.tb06453.x

Article  CAS  PubMed  Google Scholar 

Muramatsu H., Mihara H., Kakutani R., Yasuda M., Ueda M., Kurihara T., Esaki N. 2005. The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline. J. Biol. Chem. 280 (7), 5329‒5335. https://doi.org/10.1074/jbc.M411918200

Article  CAS  PubMed  Google Scholar 

Muramatsu H., Mihara H., Goto M., Miyahara I., Hirotsu K., Kurihara T., Esaki N. 2005. A new family of NAD(P)H-dependent oxidoreductases distinct from conventional Rossmann-fold proteins. J. Biosci. Bioeng. 99, 541‒754. https://doi.org/10.1263/jbb.99.541

Article  CAS  PubMed  Google Scholar 

Puzakova L.V., Puzakov M.V., Soldatov A.A. 2019. Gene encoding a novel enzyme of LDH2/MDH2 family is lost in plant and animal genomes during transition to land. J. Mol. Evol. 87, 52‒59. https://doi.org/10.1007/s00239-018-9884-2

Article  CAS  PubMed  Google Scholar 

Irimia A., Madern D., Zaccaï G., Vellieux F.M. 2004. Methanoarchaeal sulfolactate dehydrogenase: prototype of a new family of NADH-dependent enzymes. EMBO J. 23, 1234‒1244. https://doi.org/10.1038/sj.emboj.7600147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denger K., Cook A.M. 2010. Racemase activity effected by two dehydrogenases in sulfolactate degradation by Chromohalobacter salexigens: purification of (S)-sulfolactate dehydrogenase. Microbiology (Reading). 156, 967‒974. https://doi.org/10.1099/mic.0.034736-0

Article  CAS  PubMed  Google Scholar 

Zhang Y., Schofield L.R., Sang C., Dey D., Ronimus R.S. 2017. Expression, purification, and characterization of (R)-sulfolactate dehydrogenase (ComC) from the rumen methanogen Methanobrevibacter millerae SM9. Archaea. 6, 5793620. https://doi.org/10.1155/2017/5793620

Article  CAS  Google Scholar 

Puzakova L. V., Puzakov M.V., Gostyukhina O.L. 2021. Newly discovered AqE gene is highly conserved in non-tetrapod vertebrates. J Mol Evol. 89, 214‒224. https://doi.org/10.1007/s00239-021-09997-x

Article  CAS  PubMed  Google Scholar 

Berthelot C., Brunet F., Chalopin D., Juanchich A., Bernard M., Noël B., Bento P., Da Silva C., Labadie K., Alberti A., Aury J. M., Louis A., Dehais P., Bardou P., Montfort J., Klopp C., Cabau C., Gaspin C., Thorgaard G.H., Boussaha M., Quillet E., Guymard R., Galiana D., Bobe J., Volff J.N., Genêt C., Wincker P., Jaillon O., Roest Crollius H., Guiguen Y. 2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat. Commun. 5, 3657.

Article  PubMed  Google Scholar 

Petit J., David L., Dirks R., Wiegertjes G.F. 2017. Genomic and transcriptomic approaches to study immunology in cyprinids: what is next? Dev. Comp. Immunol. 75, 48‒62.

Article  CAS  PubMed  Google Scholar 

Puzakova L.V., Puzakov M.V. 2022. Tissue specificity of the AqE gene activity in the yellow croaker Larimichthys crocea. Russ. J. Genet. 58, 538–546.

Article  CAS  Google Scholar 

Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389‒3402. https://doi.org/10.1093/nar/25.17.3389

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792‒1797. https://doi.org/10.1093/nar/gkh340

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 (6), 1547‒1549. https://doi.org/10.1093/molbev/msy096

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rogozin I.B., Carmel L., Csuros M., Koonin E.V. 2012. Origin and evolution of spliceosomal introns. Bi-ol. Direct. 7, 11. https://doi.org/10.1186/1745-6150-7-11

Article  CAS  Google Scholar 

Cardoso-Moreira M., Long M. 2012. The origin and evolution of new genes. In Evolutionary Genomics. Methods Mol. Biol. (Methods and Protocols). Anisimova M., Ed. 856. Humana Press, 161–186. https://doi.org/10.1007/978-1-61779-585-5_7

Taylor J.S., Raes J. 2004. Duplication and divergence: The evolution of new genes and old ideas. Annu. Rev. Genet. 38, 615‒643. https://doi.org/10.1146/annurev.genet.38.072902.092831

Article  CAS  PubMed  Google Scholar 

Lynch M., Conery J.S. 2000. The evolutionary fate and consequences of duplicate genes. Science. 290, 1151‒1155. https://doi.org/10.1126/science.290.5494.1151

Article  CAS  PubMed  Google Scholar 

Zhouravleva G.A., Inge-Vechtomov S.G. 2009. The origin of novel proteins by gene duplication: common aspects in the evolution of color-sensitive pigment proteins and translation termination factors. Mol. Biol. (Moscow). 43, 701–712.

Article  CAS  Google Scholar 

Copley S.D. 2017. Shining a light on enzyme promiscuity. Curr. Opin. Struct. Biol. 47, 167‒175. https://doi.org/10.1016/j.sbi.2017.11.001

Article  CAS  PubMed  Google Scholar 

Ohno S. 1970. Introduction. In Evolution by Gene Duplication. Berlin: Springer. https://doi.org/10.1007/978-3-642-86659-3_1

Hahn M.W. 2009. Distinguishing among evolutionary models for the maintenance of gene duplicates. J. Hered. 100, 605‒617. https://doi.org/10.1093/jhered/esp047

Article  CAS  PubMed  Google Scholar 

Markert C.L. 1971. Developmental Genetics. Heinrich Ursprung.

Google Scholar 

Markert C.L., Shaklee J.B., Whitt G.S. 1975. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science. 189, 102‒114. https://doi.org/10.1126/science.1138367

Article  CAS  PubMed  Google Scholar 

Zuckerkandl E. 1978. Multilocus enzymes, gene regulation, and genetic sufficiency. J. Mol. Evol. 12, 57‒89. https://doi.org/10.1007/BF01732545

Article  CAS  PubMed  Google Scholar 

Eventhoff W., Rossman M. G. 1975. The evolution of the dehydrogenases and kinases. CRC Crit. Rev. Biochem. 3, 111–140.

Article  Google Scholar 

Moreau R., Dabrowski K. 1998. Body pool and synthesis of ascorbic acid in adult sea lamprey (Petromyzon marinus): An agnathan fish with gulonolactone oxidase activity. Proc. Natl. Acad. Sci. U. S. A. 95, 10279‒10282. https://doi.org/10.1073/pnas.95.17.10279

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drouin G., Godin J.R., Pagé B. 2011. The genetics of vitamin C loss in vertebrates. Curr Genomics. 12, 371‒378. https://doi.org/10.2174/138920211796429736

Article  CAS  PubMed  PubMed Central  Google Scholar 

Albalat R., Cañestro C. 2016. Evolution by gene loss. Nat. Rev. Genet. 17, 379‒391. https://doi.org/10.1038/nrg.2016.39

Article  CAS  PubMed  Google Scholar 

Greenberg A.J., Moran J.R., Coyne J.A., Wu C.I. 2003. Ecological adaptation during incipient speciation revealed by precise gene replacement. Science. 302, 1754‒1757. https://doi.org/10.1126/science.1090432

Article  CAS  PubMed  Google Scholar 

Graupner M., Xu H., White R.H. 2000. Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzing reactions involved in coenzyme biosynthesis in methanoarchaea. J. Bacteriol. 182, 3688–3692.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meshcheryakova O.V. 2004. Dynamics of the activity of lactate dehydrogenase, malate dehydrogenase, and α‑glycerophosphate dehydrogenase isoenzymes in the process of fish adaptation to various environmental factors. Extended Abstract of Cand. Sci. (Biol.) Dissertation. Petrozavodsk.

Kandoi D., Mohanty S., Tripathy B.C. 2018. Overexpression of plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress. Protoplasma. 255, 547‒563. https://doi.org/10.1007/s00709-017-1168-y

Article  CAS  PubMed  Google Scholar 

Wang Q.J., Sun H., Dong Q.L., Sun T.Y., Jin Z.X., Hao Y.J., Yao Y.X. 2016. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnol. J. 14, 1986–1997.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao Y.X., Dong Q.L., Zhai H., You C.X., Hao Y.J. 2011. The functions of an apple cytosolic malate dehydrogenase gene in growth and tolerance to cold and salt stresses. Plant Physiol. Biochem. 49, 257–264.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif