The Effect of the Knockout of Major Transsulfuration Genes on the Pattern of Protein Synthesis in D. melanogaster

Mota-Martorell N., Jové M., Borrás C., Berdún R., Obis È., Sol J., Cabré R., Pradas I., Galo-Licona J.D., Puig J., Viña J., Pamplona R. 2020. Methionine transsulfuration pathway is upregulated in long-lived humans. Free Radicals Biol. Med. 162, 38–52.

Article  Google Scholar 

Parkhitko A.A., Jouandin P., Mohr S.E., Perrimon N. 2019. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell. 18, e13034.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perridon B.W., Leuvenink H.G., Hillebrands J.L., van Goor H., Bos E.M. 2016. The role of hydrogen sulfide in aging and age-related pathologies. Aging. 8, 2264–2289.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sokolov A.S., Nekrasov P.V., Shaposhnikov M.V., Moskalev A.A. 2021. Hydrogen sulfide in longevity and pathologies: inconsistency is malodorous. Ageing Res. Rev. 67, 101262.

Article  CAS  PubMed  Google Scholar 

Tabibzadeh S. 2021. Signaling pathways and effectors of aging. Front. Biosci. 26, 50–96.

Article  CAS  Google Scholar 

Xiao Q., Ying J., Xiang L., Zhang C. 2018. The biologic effect of hydrogen sulfide and its function in various diseases. Medicine. 97, e13065.

Article  PubMed  PubMed Central  Google Scholar 

Kimura Y., Goto Y., Kimura H. 2010. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal. 12, 1–13.

Article  CAS  PubMed  Google Scholar 

Kabil O., Banerjee R. 2014. Enzymology of H2S biogenesis, decay and signaling. Antioxid. Redox Signal. 20, 770–782.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paul B.D., Snyder S.H. 2012. H2S signaling through protein sulfhydration and beyond. Nat. Rev. Mol. Cell. Biol. 13, 499–507.

Article  CAS  PubMed  Google Scholar 

Mudd S.H., Levy H.L., Kraus J.P. 2001. Disorders of transsulfuration. In The Online Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, 2007–2056.

Google Scholar 

Guzmán M.A., Navarro M.A., Carnicer R., Sarría A.J., Acín S., Arnal C., Muniesa P., Surra J.C., Arbonés-Mainar J.M., Maeda N., Osada J. 2006. Cystathionine β-synthase is essential for female reproductive function. Hum. Mol. Genet. 21, 3168–3176.

Article  Google Scholar 

Shirozu K., Tokuda K., Marutani E., Lefer D., Wang R., Ichinose F. 2014. Cystathionine γ-lyase deficiency protects mice from galactosamine/lipopolysaccharide induced acute liver failure. Antioxid. Redox Signal. 20, 204–216.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Badiei A., Chambers S.T., Gaddam R.R., Bhatia M. 2016. Cystathionine γ-lyase gene silencing with siRNA in monocytes/macrophages attenuates inflammation in cecal ligation and puncture induced sepsis in the mouse. J. Biosci. 41, 87–95.

Article  CAS  PubMed  Google Scholar 

Gaddam R.R., Fraser R., Badiei A., Chambers S., Cogger V.C., Le Couteur D.G., Ishii I., Bhatia M. 2016. Cystathionine gamma-lyase gene deletion protects mice against inflammation and liver sieve injury following polymicrobial sepsis. PLoS One. 11, e0160521.

Article  PubMed  PubMed Central  Google Scholar 

Kolluru G.K., Bir S.C., Yuan S., Shen X., Pardue S., Wang R., Kevil C.G. 2015. Cystathionine gamma-lyase regulates arteriogenesis through no-dependent monocyte recruitment. Cardiovasc. Res. 107, 590–600.

Article  PubMed  PubMed Central  Google Scholar 

Yuan S., Yurdagul A., Jr, Peretik J.M., Alfaidi M., Al Yafeai Z., Pardue S., Kevil C.G., Orr A. W. 2018. Cystathionine γ-lyase modulates flow-dependent vascular remodeling. Arterioscler., Thromb. Vasc. Biol. 38, 2126–2136.

Article  CAS  PubMed  Google Scholar 

Snijder P.M., Baratashvili M., Grzeschik N.A., Leuvenink H.G.D., Kuijpers L., Huitema S., Schaap O., Giepmans B.N.G., Kuipers J., Miljkovic J.L., Mitrovic A., Bos E.M., Szabó C., Kampinga H.H., Dijkers P.F., Bos E.M., Szabó C., Kampinga H.H., Dijkers P.F., Dunnen WFAD, Filipovic M.R., Goor H.V., Sibon OCM. 2016. Overexpression of cystathionine γ-lyase suppresses detrimental effects of spinocerebellar ataxia type 3. Mol. Med. 21, 758–768.

Article  PubMed  Google Scholar 

Zatsepina O., Karpov D., Chuvakova L., Rezvykh A., Funikov S., Sorokina S., Zakluta A., Garbuz D., Shilova V., Evgen’ev M. 2020. Genome-wide transcriptional effects of deletions of sulphur metabolism genes in Drosophila melanogaster. Redox Biol. 36, 101654.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaposhnikov M.V., Zakluta A.S., Zemskaya N.V., Guvatova Z.G., Shilova V.Y., Yakovleva D.V., Gorbunova A.A., Koval L.A., Ulyasheva N.S., Evgen’ev M.B., Zatsepina O.G., Moskalev A.A. 2022. Deletions of the cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) genes, involved in the control of hydrogen sulfide biosynthesis, significantly affect lifespan and fitness components of Drosophila melanogaster. Mech. Ageing Dev. 203, 111656.

Article  CAS  PubMed  Google Scholar 

O’Farrell P.Z., Goodman H.M., O’Farrell P.H. 1977. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 12, 1133–1141.

de Jong A., Schuurman K.G., Rodenko B., Ovaa H., Berkers C.R. 2012. Fluorescence-based proteasome activity profiling. Methods Mol. Biol. 803, 183–204.

Article  CAS  PubMed  Google Scholar 

Zatsepina O.G., Kechko O.I., Mitkevich V.A., Kozin S.A., Yurinskaya M.M., Vinokurov M.G., Serebryakova M.V., Rezvykh A.P., Evgen’ev M.B., Makarov A.A. 2018. Amyloid-β with isomerized Asp7 cytotoxicity is coupled to protein phosphorylation. Sci. Rep. 8, 3518.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meghlaoui G.K., Veuille M. 1997. Selection and methionine accumulation in the fat body protein 2 gene (FBP2), a duplicate of the Drosophila alcohol dehydrogenase (ADH) gene. J. Mol. Evol. 44, 23–32.

Article  CAS  PubMed  Google Scholar 

Zatsepina O.G., Chuvakova L.N., Nikitina E.A., Rezvykh A.P., Zakluta A.S., Sarantseva S.V., Surina N.V., Ksenofontov A.L., Baratova L.A., Shilova V.Y., Evgen’ev M.B. 2022. Genes responsible for H2S production and metabolism are involved in learning and memory in Drosophila melanogaster. Biomolecules. 12, 751.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee K.S., Iijima-Ando K., Iijima K., Lee W.J., Le J.H., Yu K., Lee D.S. 2009. JNK/FOXO-mediated neuronal expression of fly homologue of peroxiredoxin II reduces oxidative stress and extends life span. J. Biol. Chem. 284, 29454–29461.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azad P., Zhou D., Russo E., Haddad G.G. 2009. Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster. PLoS One. 4, e5371.

Article  PubMed  PubMed Central  Google Scholar 

Raynes R., Pomatto L.C., Davies K.J. 2016. Degradation of oxidized proteins by the proteasome: distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Mol. Aspects Med. 50, 41–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lefaki M., Papaevgeniou N., Chondrogianni N. 2017. Redox regulation of proteasome function. Redox Biol. 13, 452–458.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aiken C.T., Kaake R.M., Wang X., Huang L. 2011. Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell. Proteomics. 10, R110.006924.

Morozov A.V., Burov A.V., Astakhova T.M., Spasskaya D.S., Margulis B.A., Karpov V.L. 2019. Dynamics of the functional activity and expression of proteasome subunits during cellular adaptation to heat shock. Mol. Biol. (Moscow). 53, 571–579. https://doi.org/10.1134/S0026893319040071

Article  CAS  Google Scholar 

Jung T., Höhn A., Grune T. 2014. The proteasome and the degradation of oxidized proteins: Part II—protein oxidation and proteasomal degradation. Redox Biol. 2, 99–104.

Article  CAS  PubMed  Google Scholar 

Höhn T.J., Grune T. 2014. The proteasome and the degradation of oxidized proteins: part III—redox regulation of the proteasomal system. Redox Biol. 2, 388–394.

Article  PubMed  PubMed Central  Google Scholar 

Cohen-Kaplan V., Livneh I., Avni N., Fabre B., Ziv T., Kwon Y.T., Ciechanover A. 2016. p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc. Natl. Acad. Sci. U. S. A. 113, E7490–E7499.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoeller D., Dikic I. 2016. How the proteasome is degraded. Proc. Natl. Acad. Sci. U. S. A. 113, 13266–13268.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif