Diversity of MLE Helicase Functions in the Regulation of Gene Expression in Higher Eukaryotes

Fairman-Williams M.E., Guenther U.-P., Jankowsky E. 2010. SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. 20, 313–324.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee C.-G. 1997. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation. EMBO J. 16, 2671–2681.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gorbalenya A.E., Koonin E.V. 1993. Helicases: amino acid sequence comparisons and structure-function relationships. Curr. Opin. Struct. Biol. 3, 419–429.

Article  CAS  Google Scholar 

Singleton M.R., Dillingham M.S., Wigley D.B. 2007. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50.

Article  CAS  PubMed  Google Scholar 

Lee C.G., Hurwitz J. 1993. Human RNA helicase A is homologous to the maleless protein of Drosophila. J. Biol. Chem. 268, 16822–16830.

Article  CAS  PubMed  Google Scholar 

Walstrom K.M., Schmidt D., Bean C.J., Kelly W.G. 2005. RNA helicase A is important for germline transcriptional control, proliferation, and meiosis in C. elegans. Mech Dev. 122, 707–720.

Article  CAS  PubMed  Google Scholar 

Wei W., Twell D., Lindsey K. 1997. A novel nucleic acid helicase gene identified by promoter trapping in Arabidopsis. Plant J. 11, 1307–1314.

Article  CAS  PubMed  Google Scholar 

Sato H., Oshiumi H., Takaki H., Hikono H., Seya T. 2015. Evolution of the DEAD box helicase family in chicken: chickens have no DHX9 ortholog. Microbiol. Immunol. 59, 633–640.

Article  CAS  PubMed  Google Scholar 

Barber M.R.W., Aldridge J.R., Webster R.G., Magor K.E. 2010. Association of RIG-I with innate immunity of ducks to influenza. Proc. Natl. Acad. Sci. U. S. A. 107, 5913–5918.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee T., Pelletier J. 2016. The biology of DHX9 and its potential as a therapeutic target. Oncotarget. 7, 42716–42739.

Article  PubMed  PubMed Central  Google Scholar 

Aratani S., Kageyama Y., Nakamura A., Fujita H., Fujii R., Nishioka K., Nakajima T. 2008. MLE activates transcription via the minimal transactivation domain in Drosophila. Int. J. Mol. Med. 21, 469–476.

CAS  PubMed  Google Scholar 

Prabu J.R., Müller M., Thomae A.W., Schüssler S., Bonneau F., Becker P.B., Conti E. 2015. Structure of the RNA helicase MLE reveals the molecular mechanisms for uridine specificity and RNA–ATP coupling. Mol. Cell. 60, 487–499.

Article  CAS  PubMed  Google Scholar 

Xing L., Zhao X., Niu M., Kleiman L. 2014. Helicase associated 2 domain is essential for helicase activity of RNA helicase A. Biochim. Biophys. Acta, Proteins Proteomics. 1844, 1757–1764.

Article  CAS  Google Scholar 

Kuroda M.I., Kernan M.J., Kreber R., Ganetzky B., Baker B.S. 1991. The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell. 66, 935–947.

Article  CAS  PubMed  Google Scholar 

Izzo A., Regnard C., Morales V., Kremmer E., Becker P.B. 2008. Structure-function analysis of the RNA helicase maleless. Nucleic Acids Res. 36, 950–962.

Article  CAS  PubMed  Google Scholar 

Robinson J., Raguseo F., Nuccio S.P., Liano D., Di Antonio M. 2021. DNA G-quadruplex structures: more than simple roadblocks to transcription? Nucleic Acids Res. 49, 8419–8431.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Makki R., Meller V.H. 2021. When down is up: heterochromatin, nuclear organization and x upregulation. Cells. 10, 3416.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samata M., Akhtar A. 2018. Dosage compensation of the X chromosome: a complex epigenetic assignment involving chromatin regulators and long noncoding RNAs. Annu. Rev. Biochem. 87, 323–350.

Article  CAS  PubMed  Google Scholar 

Kuroda M.I., Hilfiker A., Lucchesi J.C. 2016. Dosage compensation in Drosophila—a model for the coordinate regulation of transcription. Genetics. 204, 435–450.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keller C.I., Akhtar A. 2015. The MSL complex: juggling RNA–protein interactions for dosage compensation and beyond. Curr. Opin. Genet. Dev. 31, 1–11.

Article  CAS  PubMed  Google Scholar 

Georgiev P., Chlamydas S., Akhtar A. 2011. Drosophila dosage compensation. Fly (Austin). 5, 147–154.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franke A., Baker B.S. 1999. The Rox1 and Rox2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. Mol. Cell. 4, 117–122.

Article  CAS  PubMed  Google Scholar 

Meller V.H. 2002. The RoX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J. 21, 1084–1091.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park S.-W., Kuroda M.I., Park Y. 2008. Regulation of histone H4 Lys16 acetylation by predicted alternative secondary structures in RoX noncoding RNAs. Mol. Cell. Biol. 28, 4952–4962.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park S.-W., Kang Y.I., Sypula J.G., Choi J., Oh H., Park Y. 2007. An evolutionarily conserved domain of RoX2 RNA is sufficient for induction of H4-Lys16 acetylation on the Drosophila X chromosome. Genetics. 177, 1429–1437.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stuckenholz C., Meller V.H., Kuroda M.I. 2003. Functional redundancy within roX1, a noncoding RNA involved in dosage compensation in Drosophila melanogaster. Genetics. 164, 1003–1014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kelley R.L., Lee O.-K., Shim Y.-K. 2008. Transcription rate of noncoding roX1 RNA controls local spreading of the Drosophila MSL chromatin remodeling complex. Mech. Dev. 125, 1009–1019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ilik I.A., Quinn J., Georgiev P., Tavares-Cadete F., Maticzka D., Toscano S., Wan Y., Spitale R., Luscombe N., Backofen R., Chang H., Akhtar A. 2013. Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol. Cell. 51, 156–173.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Militti C., Maenner S., Becker P.B., Gebauer F. 2014. UNR facilitates the interaction of MLE with the l-ncRNA roX2 during Drosophila dosage compensation. Nat. Commun. 5, 4762.

Article  CAS  PubMed  Google Scholar 

Maenner S., Müller M., Fröhlich J., Langer D., Becker P.B. 2013. ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins. Mol. Cell. 51, 174–184.

Article  CAS  PubMed  Google Scholar 

Bashaw G.J., Baker B.S. 1997. The regulation of the Drosophila msl-2 gene reveals a function for sex-lethal in translational control. Cell. 89, 789–798.

Article  CAS  PubMed  Google Scholar 

Kelley R.L., Wang J., Bell L., Kuroda M.I. 1997. Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature. 387, 195–199.

Article  CAS  PubMed  Google Scholar 

Morra R., Smith E.R., Yokoyama R., Lucchesi J.C. 2008. The MLE subunit of the Drosophila MSL complex uses its ATPase activity for dosage compensation and its helicase activity for targeting. Mol. Cell. Biol. 28, 958–966.

Article  CAS  PubMed  Google Scholar 

Morra R., Yokoyama R., Ling H., Lucchesi J.C. 2011. Role of the ATPase/helicase maleless (MLE) in the assembly, targeting, spreading and function of the male-specific lethal (MSL) complex of Drosophila. Epigenet. Chromatin. 4, 6.

Article  CAS  Google Scholar 

Akhtar A., Becker P.B. 2000. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol. Cell. 5, 367–375.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif