Design principles of the use of alkynes in radical cascades

Shaik, S. et al. Quadruple bonding in C2 and analogous eight-valence electron species. Nat. Chem. 4, 195–200 (2012).

Article  CAS  PubMed  Google Scholar 

Hermann, M. & Frenking, G. The chemical bond in C2. Chem. Eur. J. 22, 4100–4108 (2016).

Article  CAS  PubMed  Google Scholar 

Alabugin, I. V. & Gold, B. “Two functional groups in one package”: using both alkyne π-bonds in cascade transformations. J. Org. Chem. 78, 7777–7784 (2013). Design and control of cascade transformations utilizing both alkyne π-bonds with the formation of up to six new bonds.

Article  CAS  PubMed  Google Scholar 

Gharpure, S. J. & Porwal, S. K. Topologically driven tandem radical cyclization-based strategy for the synthesis of oxa- and aza-cages. Tetrahedron Lett. 50, 7162–7165 (2009).

Article  CAS  Google Scholar 

Tsuchii, K., Doi, M., Hirao, T. & Ogawa, A. Highly selective sequential addition and cyclization reactions involving diphenyl diselenide, an alkyne, and alkenes under visible-light irradiation. Angew. Chem. Int. Edn 42, 3490–3493 (2003).

Article  CAS  Google Scholar 

Alabugin, I. V. et al. Radical cascade transformations of tris(o-aryleneethynylenes) into substituted benzo[a]indeno[2,1-c]fluorenes. J. Am. Chem. Soc. 130, 11535–11545 (2008).

Article  CAS  PubMed  Google Scholar 

Dorel, R. & Echavarren, A. M. Gold(I)-catalyzed activation of alkynes for the construction of molecular complexity. Chem. Rev. 115, 9028–9072 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng, X.-X. et al. Dioxygen activation via Cu-catalyzed cascade radical reaction: an approach to isoxazoline/cyclic nitrone-featured α-Ketols. ACS Catal. 7, 7830–7834 (2017).

Article  CAS  Google Scholar 

Pflästerer, D., Rudolph, M. & Hashmi, A. S. K. Gold-catalyzed hydrofunctionalizations and spiroketalizations of alkynes as key steps in total synthesis. Isr. J. Chem. 58, 622–638 (2018).

Article  Google Scholar 

Yang, W., Zhang, M. & Feng, J. Recent advances in the construction of spiro compounds via radical dearomatization. Adv. Synth. Catal. 362, 4446–4461 (2020).

Article  CAS  Google Scholar 

Yan, J. et al. A radical Smiles rearrangement promoted by neutral eosin Y as a direct hydrogen atom transfer photocatalyst. J. Am. Chem. Soc. 142, 11357–11362 (2020).

Article  CAS  PubMed  Google Scholar 

Nakayama, Y. et al. Total synthesis of ritterazine B. J. Am. Chem. Soc. 143, 4187–4192 (2021).

Article  CAS  PubMed  Google Scholar 

Le, S. et al. [3+2] cycloaddition of alkyl aldehydes and alkynes enabled by photoinduced hydrogen atom transfer. Nat. Commun. 13, 4734–4742 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alabugin, I. V. & Gonzalez-Rodriguez, E. Alkyne origami: folding oligoalkynes into polyaromatics. Acc. Chem. Res. 51, 1206–1219 (2018). Application of alkyne cyclizations for the preparation of carbon-rich molecules and materials.

Article  CAS  PubMed  Google Scholar 

Nicolaides, A. & Borden, W. T. Ab initio calculations of the relative strengths of the pi bonds in acetylene and ethylene and of their effect on the relative energies of pi-bond addition reactions. J. Am. Chem. Soc. 113, 6750–6755 (1991).

Article  CAS  Google Scholar 

Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Edn 40, 2004–2021 (2001).

Article  CAS  Google Scholar 

Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Edn 41, 2596–2599 (2002).

Article  CAS  Google Scholar 

Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl Acad. Sci. USA 104, 16793–16797 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moses, J. E. & Moorhouse, A. D. The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007).

Article  CAS  PubMed  Google Scholar 

Tron, G. C. et al. Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med. Res. Rev. 28, 278–308 (2008).

Article  CAS  PubMed  Google Scholar 

Zeni, G. & Larock, R. C. Synthesis of heterocycles via palladium π-olefin and π-alkyne chemistry. Chem. Rev. 104, 2285–2310 (2004).

Article  CAS  PubMed  Google Scholar 

Godoi, B., Schumacher, R. F. & Zeni, G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem. Rev. 111, 2937–2980 (2011).

Article  CAS  PubMed  Google Scholar 

Luo, Y., Pan, X., Yu, X. & Wu, J. Double carbometallation of alkynes: an efficient strategy for the construction of polycycles. Chem. Soc. Rev. 43, 834–846 (2014).

Article  CAS  PubMed  Google Scholar 

Huang, H.-M., McDouall, J. J. W. & Procter, D. J. SmI2-catalysed cyclization cascades by radical relay. Nat. Catal. 2, 211–218 (2019).

Article  CAS  Google Scholar 

Sonawane, A. D., Sonawane, R. A., Ninomiya, M. & Koketsu, M. Synthesis of seleno‐heterocycles via electrophilic/radical cyclization of alkyne containing heteroatoms. Adv. Synth. Catal. 362, 3485–3515 (2020).

Article  CAS  Google Scholar 

Li, M. et al. Divergent synthesis of fused tetracyclic heterocycles from diarylalkynes enabled by the selective insertion of isocyanide. Angew. Chem. Int. Edn 61, e202208203 (2022).

CAS  Google Scholar 

Yang, X., Wang, G. & Ye, Z.-S. Palladium-catalyzed nucleomethylation of alkynes for synthesis of methylated heteroaromatic compounds. Chem. Sci. 13, 10095–10102 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, S., Ma, H., Yang, R., Song, X.-R. & Xiao, Q. Recent advances in the cascade reactions of enynols/diynols for the synthesis of carbo- and heterocycles. Org. Chem. Front. 9, 5643–5674 (2022).

Article  CAS  Google Scholar 

Chernick, E. T. & Tykwinski, R. R. Carbon-rich nanostructures: the conversion of acetylenes into materials: the conversion of acetylenes into materials. J. Phys. Org. Chem. 26, 742–749 (2013).

Article  CAS  Google Scholar 

Hein, S. J., Lehnherr, D., Arslan, H., J. Uribe-Romo, F. & Dichtel, W. R. Alkyne benzannulation reactions for the synthesis of novel aromatic architectures. Acc. Chem. Res. 50, 2776–2788 (2017).

Article  CAS  PubMed  Google Scholar 

Senese, A. & Chalifoux, W. Nanographene and graphene nanoribbon synthesis via alkyne benzannulations. Molecules 24, 118 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Alabugin, I., Gonzalez-Rodriguez, E., Kawade, R., Stepanov, A. & Vasilevsky, S. Alkynes as synthetic equivalents of ketones and aldehydes: a hidden entry into carbonyl chemistry. Molecules 24, 1036 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Tsvetkov, N. P. et al. Radical alkyne peri‐annulation reactions for the synthesis of functionalized phenalenes, benzanthrenes, and olympicene. Angew. Chem. Int. Edn 57, 3651–3655 (2018).

Article  CAS  Google Scholar 

Curran, D. P. The design and application of free radical chain reactions in organic synthesis. Part 1. Synthesis 1988, 417–439 (1988). A comprehensive review of radical reactions, from fundamental factors to applications.

Article  Google Scholar 

Curran, D. P. The design and application of free radical chain reactions in organic synthesis. Part 2. Synthesis 1988, 489–513 (1988). A comprehensive review of radical reactions, from fundamental factors to applications.

Article  Google Scholar 

Baldwin, J. E. Rules for ring closure. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39760000734 (1976).

Article  Google Scholar 

Alabugin, I. V., Gilmore, K. & Manoharan, M. Rules for anionic and radical ring closure of alkynes. J. Am. Chem. Soc. 133, 12608–12623 (2011). A general overview of the preferred patterns of anionic and radical cyclizations of alkyne.

Article  CAS  PubMed  Google Scholar 

Beckwith, A. L. J., Easton, C. J. & Serelis, A. K. Some guidelines for radical reactions. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/c39800000482 (1980).

Article  Google Scholar 

Bharucha, K. N., Marsh, R. M., Minto, R. E. & Bergman, R. G. Double cycloaromatization of (Z,Z)-deca-3,7-diene-1,5,9-triyne: evidence for the intermediacy and diradical character of 2,6-didehydronaphthalene. J. Am. Chem. Soc. 114, 3120–3121 (1992).

Article  CAS  Google Scholar 

Amrein, S. & Studer, A. Intramolecular radical hydrosilylation — the first radical 5-endo-dig cyclisation. Chem. Commun. https://doi.org/10.1039/b204879e (2002).

Article  Google Scholar 

Alabugin, I. V. et al. In search of efficient 5-endo-dig cyclization of a carbon-centered radical: 40 years from a prediction to another success for the Baldwin rules. J. Am. Chem. Soc. 130, 10984–10995 (2008).

留言 (0)

沒有登入
gif